
Mahmud Dwaikat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4411853/publications.pdf Version: 2024-02-01

ΜΑΗΜΠΟ ΟΜΑΙΚΑΤ

#	Article	IF	CITATIONS
1	Simple equations for predicting the rotational ductility of fiber-reinforced-polymer strengthened reinforced concrete joints. Structures, 2020, 24, 73-86.	3.6	13
2	Effect of using CFRP wraps on the strength and ductility behaviors of exterior reinforced concrete joint. Composite Structures, 2018, 201, 721-739.	5.8	26
3	On the plastic moment-shear interaction curves of steel sections under fire. Journal of Structural Fire Engineering, 2016, 7, 97-113.	0.8	1
4	A simplified approach for predicting temperatures in fire exposed steel members. Fire Safety Journal, 2013, 55, 87-96.	3.1	16
5	A simplified approach for predicting temperature in reinforced concrete members exposed to standard fire. Fire Safety Journal, 2013, 56, 39-51.	3.1	50
6	Evaluating Fire Resistance of Steel Girders in Bridges. Journal of Bridge Engineering, 2013, 18, 633-643.	2.9	75
7	Critical factors influencing the fire performance of bolted double angle connections. Engineering Structures, 2012, 42, 106-114.	5.3	15
8	Effect of the stochastic nature of the constituents parameters on the predictability of the elastic properties of fibrous nano-composites. Composites Science and Technology, 2012, 72, 1882-1891.	7.8	16
9	Experimental and Analytical Study of Free-Fall Drop Impact Testing of Portable Products. Experimental Mechanics, 2012, 52, 1385-1395.	2.0	28
10	A Simplified Approach for Predicting Temperature Profile in Steel Members With Locally Damaged Fire Protection. Fire Technology, 2012, 48, 493-512.	3.0	19
11	A model for elastic hysteresis of unidirectional fibrous nano composites incorporating stick-slip. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 530, 349-356.	5.6	15
12	Experimental behavior of steel beam–columns subjected to fire-induced thermal gradients. Journal of Constructional Steel Research, 2011, 67, 30-38.	3.9	56
13	A performance based methodology for fire design of restrained steel beams. Journal of Constructional Steel Research, 2011, 67, 510-524.	3.9	51
14	Modeling Fracture and Delamination of Spray-Applied Fire-Resisting Materials under Static and Impact Loads. Journal of Engineering Mechanics - ASCE, 2011, 137, 901-910.	2.9	14
15	Engineering Approach for Predicting Fire Response of Restrained Steel Beams. Journal of Engineering Mechanics - ASCE, 2011, 137, 447-461.	2.9	19
16	Effect of high temperature creep on the fire response of restrained steel beams. Materials and Structures/Materiaux Et Constructions, 2010, 43, 1327-1341.	3.1	91
17	Effect of Location of Restraint on Fire Response of Steel Beams. Fire Technology, 2010, 46, 109-128.	3.0	21
18	A simplified approach for evaluating plastic axial and moment capacity curves for beam–columns with non-uniform thermal gradients. Engineering Structures, 2010, 32, 1423-1436.	5.3	13

MAHMUD DWAIKAT

#	Article	lF	CITATIONS
19	High-Temperature Properties of Steel for Fire Resistance Modeling of Structures. Journal of Materials in Civil Engineering, 2010, 22, 423-434.	2.9	203
20	Effect of Restraint Force Location on the Response of Steel Beams Exposed to Fire. , 2009, , .		0
21	Response of steel beam–columns exposed to fire. Engineering Structures, 2009, 31, 369-379.	5.3	62
22	Simple Approach for Calculating Inelastic Deflections of Simply Supported Steel Beams under Fire. , 2009, , .		0