Marek Szkodo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4411483/publications.pdf

Version: 2024-02-01

759233 713466 64 531 12 21 citations h-index g-index papers 64 64 64 686 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Corrosion Properties of Dissimilar AA6082/AA6060 Friction Stir Welded Butt Joints in Different NaCl Concentrations. International Journal of Precision Engineering and Manufacturing - Green Technology, 2023, 10, 457-477.	4.9	6
2	Effect of Processing Parameters on Strength and Corrosion Resistance of Friction Stir-Welded AA6082. Metals, 2022, 12, 192.	2.3	5
3	A Quantitative Investigation of Dislocation Density in an Al Matrix Composite Produced by a Combination of Micro-/Macro-Rolling. Journal of Composites Science, 2022, 6, 199.	3.0	6
4	Effect of MAO coatings on cavitation erosion and tribological properties of 5056 and 7075 aluminum alloys. Wear, 2021, 474-475, 203709.	3.1	9
5	Modeling of Passive and Forced Convection Heat Transfer in Channels with Rib Turbulators. Energies, 2021, 14, 7059.	3.1	2
6	Laser-assisted modification of titanium dioxide nanotubes in a tilted mode as surface modification and patterning strategy. Applied Surface Science, 2020, 508, 145143.	6.1	24
7	In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium. Materials, 2020, 13, 4359.	2.9	17
8	Manufacturing Parameters, Materials, and Welds Properties of Butt Friction Stir Welded Joints–Overview. Materials, 2020, 13, 4940.	2.9	20
9	Thermochemical Conversion of Biomass and Municipal Waste into Useful Energy Using Advanced HiTAG/HiTSG Technology. Energies, 2020, 13, 4218.	3.1	13
10	Properties of Barium Cerate Thin Films Formed Using E-Beam Deposition. Crystals, 2020, 10, 1152.	2.2	5
11	The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydrate Polymers, 2020, 236, 116023.	10.2	29
12	The Influence of the Depth of Cut in Single-Pass Grinding on the Microstructure and Properties of the C45 Steel Surface Layer. Materials, 2020, 13, 1040.	2.9	7
13	Physicochemical and Mechanical Performance of Freestanding Boron-Doped Diamond Nanosheets Coated with C:H:N:O Plasma Polymer. Materials, 2020, 13, 1861.	2.9	2
14	Effect of selective laser treatment on initiation of fatigue crack in the main part of an undercarriage drag strut. Chinese Journal of Aeronautics, 2019, 32, 701-714.	5. 3	5
15	Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Technique: Estimation of Bioactivity and Nanomechanical Properties. Nanomaterials, 2019, 9, 123.	4.1	20
16	Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant. Materials Science and Engineering C, 2019, 97, 302-312.	7.3	16
17	Forming the surface layer properties during grinding. , 2019, , 661-663.	0.1	1
18	Aumento de calidad en uniones soldadas de estructuras de paredes delgadas mediante modelo de simulaci $ ilde{A}^3$ n. Revista De Metalurgia, 2019, 55, 158.	0.5	0

#	Article	IF	CITATIONS
19	A universal NDT method for examination of low energy impact damage in CFRP with the use of TLC film. Nondestructive Testing and Evaluation, 2018, 33, 315-328.	2.1	4
20	Laboratory research on the influence of swelling clay on the quality of borehole cementing and evaluation of clay-cutting wellbore tool prototype. Applied Clay Science, 2018, 164, 13-25.	5.2	1
21	Studies on Silver Ions Releasing Processes and Mechanical Properties of Surface-Modified Titanium Alloy Implants. International Journal of Molecular Sciences, 2018, 19, 3962.	4.1	20
22	Structural and mechanical properties of hydroxyapatite coatings formed by ion-beam assisted deposition. Journal of Physics: Conference Series, 2018, 992, 012035.	0.4	4
23	Influence of parameters of deep grinding on nanohardness and surface roughness of C45 steel. , 2018, , 1026-1028.	0.1	1
24	Cavitation erosion degradation of Belzona $\sup \hat{A}^{\otimes}$ (sup) coatings. Advances in Materials Science, 2017, 17, 22-33.	1.0	4
25	The Processing Procedure for the Interpretation of Microseismic Signal Acquired from a Surface Array During Hydraulic Fracturing in Pomerania Region in Poland. Procedia Computer Science, 2017, 108, 1722-1730.	2.0	1
26	MATCHED FILTER APPROACH FOR MICROSEISMIC SIGNAL PROCESSING OF REAL DATA FROM EAST POMERANIA SHALE GAS., 2017,,.		0
27	REVERSE MODELLING OF MICROSEISMIC WAVES PROPAGATION FOR THE INTERPRETATION OF THE DATA FROM HYDRAULIC FRACTURING MONITORING IN POLAND. , 2017, , .		0
28	MICROSEISMIC EVENT DETECTION USING DIFFERENT ALGORITHMS ON REAL DATA FROM PATCH ARRAY GEOPHONE GRID FROM EASTERN POMERANIA FRACTURING JOB. , 2017, , .		0
29	Effect of plasma sprayed and laser re-melted Al2O3 coatings on hardness and wear properties of stainless steel. Ceramics International, 2016, 42, 11275-11284.	4.8	47
30	On the Durability of the Hydraulic Satellite Motor Working Mechanism in Overload Condition. Advances in Materials Science, 2016, 16, 35-46.	1.0	1
31	Influence of Nitriding and Laser Remelting on Properties of Austenitic Stainless Steel Type X10CrNi18-8 and Cavitation Erosion Resistance. Advances in Materials Science, 2016, 16, 21-31.	1.0	0
32	Cavitation Erosion of P110 Steel in Different Drilling Muds. Advances in Materials Science, 2016, 16, 57-67.	1.0	3
33	Influence of laser processing of the low alloy medium carbon structural steel on the development of the fatigue crack. Surface and Coatings Technology, 2016, 296, 117-123.	4.8	9
34	Studies of the mechanism of metal dusting of 10CrMo9-10 steel after 10 years of operation in the semi-regenerative catalytic reformer. Corrosion Science, 2016, 102, 279-290.	6.6	8
35	Clay Minerals – Mineralogy and Phenomenon of Clay Swelling in Oil & Gas Industry. Advances in Materials Science, 2015, 15, 37-55.	1.0	49
36	Surface treatment of C80U steel by long CO2 laser pulses. Journal of Materials Processing Technology, 2015, 217, 114-121.	6.3	10

3

#	Article	IF	CITATIONS
37	Influence of Spatial Structures of 316L Stainless Steel on its Cavitation Erosion Resistance. Solid State Phenomena, 2014, 225, 109-114.	0.3	0
38	Cavitation Erosion Resistance of Austenitic Stainless Steel after Glow-Discharge Nitriding Process. Solid State Phenomena, 2011, 183, 201-206.	0.3	1
39	Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Solar Energy Materials and Solar Cells, 2010, 94, 2275-2282.	6.2	104
40	Influence of Cavitation Intensity on the Relative Cavitation Resistance of Laser Processed C45 Carbon Steel. Solid State Phenomena, 2010, 165, 189-194.	0.3	0
41	On the importance of volume of eroded material for cavitation erosion. International Journal of Computational Materials Science and Surface Engineering, 2007, 1, 452.	0.2	0
42	Scale Effects in Cavitation Erosion of Materials. Solid State Phenomena, 2006, 113, 517-520.	0.3	2
43	Phase Investigations of Copper Based CuZn38Al2MnFe Alloy. Solid State Phenomena, 2006, 113, 537-540.	0.3	0
44	Cavitation Erosion Behavior of 18/8 Stainless Steel after Its Laser Alloying of Manganese. Solid State Phenomena, 2006, 113, 513-516.	0.3	3
45	Mathematical description and evaluation of cavitation erosion resistance of materials. Journal of Materials Processing Technology, 2005, 164-165, 1631-1636.	6.3	17
46	Relationship between microstructure of laser alloyed C45 steel and its cavitation resistance. Journal of Materials Processing Technology, 2005, 162-163, 410-415.	6.3	10
47	Cavitation erosion of some laser-produced iron-base corrosion-resistant alloys. Wear, 2005, 258, 614-622.	3.1	8
48	Cavitation erosion of steels processed by CO2 laser beams of various parameters. Journal of Materials Processing Technology, 2004, 157-158, 446-450.	6.3	3
49	Cavitation Erosion of Some Alloys Manufactured on Steel and Iron Surfaces by Laser Beam. Journal of Materials Engineering and Performance, 2003, 12, 512-520.	2.5	5
50	$$ $$ $$ $$ $$ $$ $$ $$ $$		1
51	<title>Some coatings of high cavitation resistance produced by CO<formula><inf><roman></ir></roman></formula> laser beam</title> ., 2003,,.		0
52	Search for CO 2 laser beam parameters affecting the process of the laser elevating of cavitation resistance of steels., 2001, 4184, 594.		1
53	Cavitation resistance of 45 and 2Cr13 steels enriched with laser-deposited Hf, SiC, or SiC+AlNi powders., 2000, 4238, 142.		4
54	The effect of cavitation loading spectrum on microhardness in an Al alloy AlMg2Mn. Wear, 1999, 233-235, 75-78.	3.1	1

#	Article	IF	CITATIONS
55	The influence of residual stresses on cavitation resistance of metals â€" an analysis based on investigations of metals remelted by laser beam and optical discharge plasma. Wear, 1999, 233-235, 86-92.	3.1	14
56	Cavitation resistance of new chromium–manganese and chromium–cobalt electrodes and their metallographic structures. Wear, 1999, 233-235, 111-119.	3.1	1
57	Cavitation Erosion Resistance of Austenitic Microstructure Created by Laser Beam. Solid State Phenomena, 0, 165, 195-200.	0.3	0
58	The Characteristic of Surface Layers on Austenitic Stainless Steel after Glow-Discharge Nitriding Process. Solid State Phenomena, 0, 165, 165-168.	0.3	2
59	Assessment of FSW Welds Made of Aluminum Alloy AW7075-T651. Solid State Phenomena, 0, 165, 201-206.	0.3	1
60	The Influence of Gas Mixture in the Glow-Discharge Nitriding Process of Austenitic Stainless Steel on Characteristic of Nitrided Cases. Key Engineering Materials, 0, 490, 282-287.	0.4	1
61	Effect of some Sulphur Additives on the Degradation of 9Cr-1Mo Steel after its 10 Years Service in the CCR Platforming Unit. Solid State Phenomena, 0, 225, 139-144.	0.3	0
62	Laser Beam as a Precision Tool to Increase Fatigue Resistance in an Eyelet of Undercarriage Drag Strut. International Journal of Precision Engineering and Manufacturing - Green Technology, 0, , 1.	4.9	3
63	Microseismic Monitoring of Hydraulic Fracturing â§" Data Interpretation Methodology with an Example from Pomerania. , 0, , .		0
64	Planning, Configuration and Usefulness of Microseismic Monitoring on Eastern-Europe Platform – Example from East Pomerania. , 0, , .		0