Sergey V Pavlushin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4411480/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asynchrony between Host Plant and Insects-Defoliator within a Tritrophic System: The Role of Herbivore Innate Immunity. PLoS ONE, 2015, 10, e0130988.	2.5	28
2	Phenological asynchrony between host plant and gypsy moth reduces insect gut microbiota and susceptibility to <i>Bacillus thuringiensis</i> . Ecology and Evolution, 2016, 6, 7298-7310.	1.9	25
3	Rapid induced resistance of silver birch affects both innate immunity and performance of gypsy moths: the role of plant chemical defenses. Arthropod-Plant Interactions, 2012, 6, 507-518.	1.1	23
4	The Effects of Defoliation-Induced Delayed Changes in Silver Birch Foliar Chemistry on Gypsy Moth Fitness, Immune Response, and Resistance to Baculovirus Infection. Journal of Chemical Ecology, 2012, 38, 295-305.	1.8	23
5	Leaf Surface Lipophilic Compounds as One of the Factors of Silver Birch Chemical Defense against Larvae of Gypsy Moth. PLoS ONE, 2015, 10, e0121917.	2.5	17
6	Genetic evidence of broad spreading of Lymantria dispar in the West Siberian Plain. PLoS ONE, 2019, 14, e0220954.	2.5	16
7	Molecular sexing of Lepidoptera. Journal of Insect Physiology, 2019, 114, 53-56.	2.0	13
8	A comparison of the adaptations of strains of Lymantria dispar multiple nucleopolyhedrovirus to hosts from spatially isolated populations. Journal of Invertebrate Pathology, 2017, 146, 41-46.	3.2	12
9	The effect of population density of Lymantria dispar (Lepidoptera: Erebidae) on its fitness, physiology and activation of the covert nucleopolyhedrovirus. European Journal of Entomology, 0, 116, 85-91.	1.2	12
10	The activity of phenoloxidase in haemolymph plasma is not a predictor of Lymantria dispar resistance to its baculovirus. PLoS ONE, 2017, 12, e0183940.	2.5	9
11	A Comparison of the Vertical Transmission of High- and Low-Virulence Nucleopolyhedrovirus Strains in Lymantria Dispar L Insects, 2020, 11, 455.	2.2	7
12	Dynamics of Biologically Active Compound Contents from Betula pendula Leaves During Early Leaf Development. Chemistry of Natural Compounds, 2016, 52, 193-198.	0.8	5
13	Potency of Nucleopolyhedrovirus Genotypes for European and Asian Gypsy Moth (Lepidoptera:) Tj ETQq1 1 0.78	4314 rgBT 0.3	/Qverlock 1
14	Appearances are deceptive: Three RNA viruses co-infected with the nucleopolyhedrovirus in host Lymantria dispar. Virus Research, 2021, 297, 198371.	2.2	4
15	The effect of mixtures of Bacillus thuringiensis-based insecticide and multiple nucleopolyhedrovirus of Lymantria dispar L. in combination with an optical brightener on L. dispar larvae. BioControl, 2022, 67, 331-343.	2.0	4
16	Sex Specificity in Innate Immunity of Insect Larvae. Journal of Insect Science, 2021, 21, .	1.5	1