List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4411248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promising ultra-high-temperature ceramic materials for aerospace applications. Russian Journal of Inorganic Chemistry, 2013, 58, 1669-1693.	1.3	113
2	Synthesis of highly dispersed super-refractory tantalum-zirconium carbide Ta4ZrC5 and tantalum-hafnium carbide Ta4HfC5 via sol-gel technology. Russian Journal of Inorganic Chemistry, 2011, 56, 1681-1687.	1.3	66
3	Synthesis, Vaporization and Thermodynamic Properties of Superfine Nd ₂ Hf ₂ O ₇ and Gd ₂ Hf ₂ O ₇ . European Journal of Inorganic Chemistry, 2013, 2013, 4636-4644.	2.0	44
4	Gas-sensing properties of nanostructured CeO2-xZrO2 thin films obtained by the sol-gel method. Journal of Alloys and Compounds, 2019, 773, 1023-1032.	5.5	40
5	Low-temperature synthesis of nanodispersed titanium, zirconium, and hafnium carbides. Russian Journal of Inorganic Chemistry, 2011, 56, 661-672.	1.3	39
6	Pen plotter printing of Co3O4 thin films: features of the microstructure, optical, electrophysical and gas-sensing properties. Journal of Alloys and Compounds, 2020, 832, 154957.	5.5	38
7	Synthesis of BaCe0.9xZrxY0.1O3 nanopowders and the study of proton conductors fabricated on their basis by low-temperature spark plasma sintering. International Journal of Hydrogen Energy, 2019, 44, 20345-20354.	7.1	37
8	Pen plotter printing of ITO thin film as a highly CO sensitive component of a resistive gas sensor. Talanta, 2021, 221, 121455.	5.5	37
9	Low-temperature synthesis of TaC through transparent tantalum-carbon containing gel. Inorganic Materials, 2010, 46, 495-500.	0.8	33
10	Behavior of a sample of the ceramic material HfB2–SiC (45 vol %) in the flow of dissociated air and the analysis of the emission spectrum of the boundary layer above its surface. Russian Journal of Inorganic Chemistry, 2015, 60, 1360-1373.	1.3	32
11	Reducing Humidity Response of Gas Sensors for Medical Applications: Use of Spark Discharge Synthesis of Metal Oxide Nanoparticles. Sensors, 2018, 18, 2600.	3.8	32
12	Microstructural, electrophysical and gas-sensing properties of CeO2–Y2O3 thin films obtained by the sol-gel process. Ceramics International, 2020, 46, 121-131.	4.8	32
13	Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an "Electronic Olfaction―Unit. ACS Applied Materials & Interfaces, 2020, 12, 56135-56150.	8.0	32
14	Production of HfB2–SiC (10–65 vol % SiC) Ultra-High-Temperature Ceramics by Hot Pressing of HfB2–(SiO2–C) Composite Powder Synthesized by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 1-15.	1.3	31
15	Production of ultrahigh temperature composite materials HfB2-SiC and the study of their behavior under the action of a dissociated air flow. Russian Journal of Inorganic Chemistry, 2013, 58, 1269-1276.	1.3	30
16	Synthesis, vaporization and thermodynamics of ceramic powders based on the Y2O3–ZrO2–HfO2 system. Materials Chemistry and Physics, 2015, 153, 78-87.	4.0	30
17	Oxygen detection using nanostructured TiO2 thin films obtained by the molecular layering method. Applied Surface Science, 2019, 463, 197-202.	6.1	30
18	HfB2-SiC (10–20 vol %) ceramic materials: Manufacture and behavior under long-term exposure to dissociated air streams. Russian Journal of Inorganic Chemistry, 2014, 59, 1361-1382.	1.3	29

#	Article	IF	CITATIONS
19	HfB2-SiC (45 vol %) ceramic material: Manufacture and behavior under long-term exposure to dissociated air jet flow. Russian Journal of Inorganic Chemistry, 2014, 59, 1298-1311.	1.3	29
20	Behavior of HfB2-SiC (10, 15, and 20 vol %) ceramic materials in high-enthalpy air flows. Russian Journal of Inorganic Chemistry, 2016, 61, 1203-1218.	1.3	29
21	Preparation of porous SiC-ceramics by sol–gel and spark plasma sintering. Journal of Sol-Gel Science and Technology, 2017, 82, 748-759.	2.4	29
22	Study of the Thermal Behavior of Wedge-Shaped Samples of HfB2–45 vol % SiC Ultra-High-Temperature Composite in a High-Enthalpy Air Flow. Russian Journal of Inorganic Chemistry, 2018, 63, 421-432.	1.3	29
23	Vaporization and thermodynamic properties of lanthanum hafnate. Journal of Alloys and Compounds, 2018, 735, 2348-2355.	5.5	28
24	Impact of a Supersonic Dissociated Air Flow on the Surface of HfB2–30 vol % SiC UHTC Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 1484-1493.	1.3	28
25	Spark plasma sintering of nanopowders in the CeO2-Y2O3 system as a promising approach to the creation of nanocrystalline intermediate-temperature solid electrolytes. Ceramics International, 2018, 44, 19879-19884.	4.8	28
26	Ink-jet printing of a TiO2–10%ZrO2 thin film for oxygen detection using a solution of metal alkoxoacetylacetonates. Thin Solid Films, 2019, 670, 46-53.	1.8	28
27	Microplotter printing of planar solid electrolytes in the CeO2–Y2O3 system. Journal of Colloid and Interface Science, 2021, 588, 209-220.	9.4	28
28	Bis(4-cyano-1-pyridino)pentane halobismuthates. Light-harvesting material with an optical band gap of 1.59 eV. Mendeleev Communications, 2017, 27, 271-273.	1.6	27
29	Chemoresistive gas-sensing properties of highly dispersed Nb2O5 obtained by programmable precipitation. Journal of Alloys and Compounds, 2021, 868, 159090.	5.5	26
30	Behavior of HfB2–30 vol% SiC UHTC obtained by sol–gel approach in the supersonic airflow. Journal of Sol-Gel Science and Technology, 2019, 92, 386-397.	2.4	25
31	Detection of potential biodeterioration risks for tempera painting in 16th century exhibits from State Tretyakov Gallery. PLoS ONE, 2020, 15, e0230591.	2.5	25
32	Synthesis of ultrafine yttrium aluminum garnet using sol-gel technology. Russian Journal of Inorganic Chemistry, 2012, 57, 1521-1528.	1.3	24
33	Synthesis of nanocrystalline silicon carbide using the sol-gel technique. Russian Journal of Inorganic Chemistry, 2013, 58, 1143-1151.	1.3	23
34	Zinc oxide obtained by the solvothermal method with high sensitivity and selectivity to nitrogen dioxide. Ceramics International, 2020, 46, 7756-7766.	4.8	23
35	Microextrusion printing of gas-sensitive planar anisotropic NiO nanostructures and their surface modification in an H2S atmosphere. Applied Surface Science, 2022, 578, 151984.	6.1	23
36	Experimental and theoretical determination of the saturation vapor pressure of silicon in a wide range of temperatures. Russian Journal of Inorganic Chemistry, 2010, 55, 2073-2088.	1.3	22

NIKOLAY P SIMONENKO

#	Article	IF	CITATIONS
37	Synthesis of Finely Dispersed La2Zr2O7, La2Hf2O7, Gd2Zr2O7 and Gd2Hf2O7 Oxides. Mendeleev Communications, 2013, 23, 17-18.	1.6	22
38	Thin films of the composition 8% Y2O3–92% ZrO2 (8YSZ) as gas-sensing materials for oxygen detection. Russian Journal of Inorganic Chemistry, 2017, 62, 695-701.	1.3	22
39	ZrB2/HfB2–SiC Ceramics Modified by Refractory Carbides: An Overview. Russian Journal of Inorganic Chemistry, 2019, 64, 1697-1725.	1.3	22
40	Chemoresistive gas-sensitive ZnO/Pt nanocomposites films applied by microplotter printing with increased sensitivity to benzene and hydrogen. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115233.	3.5	22
41	Vaporization of molecular titanium coordination compounds—a structural–thermochemical approach. Thermochimica Acta, 2002, 381, 173-180.	2.7	20
42	Synthesis of ultrafine refractory oxides zirconia-hafnia-yttria by sol-gel technology. Russian Journal of Inorganic Chemistry, 2012, 57, 307-312.	1.3	20
43	Liquid-phase synthesis and physicochemical properties of xerogels, nanopowders and thin films of the CeO2–Y2O3 system. Russian Journal of Inorganic Chemistry, 2016, 61, 1061-1069.	1.3	20
44	ZrB2/HfB2–SiC Ultra-High-Temperature Ceramic Materials Modified by Carbon Components: The Review. Russian Journal of Inorganic Chemistry, 2018, 63, 1772-1795.	1.3	20
45	Printing Technologies as an Emerging Approach in Gas Sensors: Survey of Literature. Sensors, 2022, 22, 3473.	3.8	20
46	Production of 8%Y2O3-92%ZrO2 (8YSZ) thin films by sol-gel technology. Russian Journal of Inorganic Chemistry, 2015, 60, 795-803.	1.3	19
47	Glycol–citrate synthesis of ultrafine lanthanum zirconate. Russian Journal of Inorganic Chemistry, 2015, 60, 1452-1458.	1.3	19
48	Study of the effect of methods for liquid-phase synthesis of nanopowders on the structure and physicochemical properties of ceramics in the CeO2–Y2O3 system. Russian Journal of Inorganic Chemistry, 2017, 62, 1275-1285.	1.3	18
49	Impact of a Subsonic Dissociated Air Flow on the Surface of HfB2–30 vol % SiC UHTC Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 1345-1355.	1.3	18
50	Obtaining of NiO Nanosheets by a Combination of Sol–Gel Technology and Hydrothermal Treatment Using Nickel Acetylacetonate as a Precursor. Russian Journal of Inorganic Chemistry, 2019, 64, 1753-1757.	1.3	18
51	Oxidation of HfB2-SiC-Ta4HfC5 ceramic material by a supersonic flow of dissociated air. Journal of the European Ceramic Society, 2021, 41, 1088-1098.	5.7	18
52	Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors. Applied Sciences (Switzerland), 2021, 11, 526.	2.5	18
53	Synthesis, vaporization, and thermodynamics of ultrafine Nd2Hf2O7 powders. Russian Journal of Inorganic Chemistry, 2013, 58, 1-8.	1.3	17

Synthesis, thermal stability, crystal structure and optical properties of $1,1\hat{a}\in^2$ -(1, n) Tj ETQq0 0 0 rgBT /Overlock $10.Tf_{2.2}$ 50 62 Td (-alkane)

#	Article	IF	CITATIONS
55	Gas-sensing properties of nanostructured TiO2–xZrO2 thin films obtained by the sol–gel method. Journal of Sol-Gel Science and Technology, 2019, 92, 415-426.	2.4	17
56	Synthesis of One-Dimensional Nanostructures of CeO2–10% Y2O3 Oxide by Programmed Coprecipitation in the Presence of Polyvinyl Alcohol. Russian Journal of Inorganic Chemistry, 2019, 64, 1475-1481.	1.3	17
57	Spark Plasma Sintering-Reactive Synthesis of SiC and SiC–HfB2 Ceramics Based on Natural Renewable Raw Materials. Russian Journal of Inorganic Chemistry, 2021, 66, 629-637.	1.3	17
58	Composites based on self-assembled MnAs ferromagnet nanoclusters embedded in ZnSnAs2 semiconductor. Journal of Alloys and Compounds, 2015, 650, 277-284.	5.5	16
59	Preparation of high-porous SiC ceramics from polymeric composites based on diatomite powder. Journal of Materials Science, 2015, 50, 733-744.	3.7	16
60	Cerous phosphate gels: Synthesis, thermal decomposition and hydrothermal crystallization paths. Journal of Non-Crystalline Solids, 2016, 447, 183-189.	3.1	16
61	Preparation of nanostructured thin films of yttrium aluminum garnet (Y3Al5O12) by Sol—Gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 667-673.	1.3	16
62	Hybrid halobismuthates: a coordinated BrIBr – anion. Mendeleev Communications, 2017, 27, 454-455.	1.6	16
63	The effects of subsonic and supersonic dissociated air flow on the surface of ultra-high-temperature HfB2-30 vol% SiC ceramics obtained using the sol-gel method. Journal of the European Ceramic Society, 2020, 40, 1093-1102.	5.7	16
64	Thermodynamic Analysis of the Production of Silicon Carbide via Silicon Dioxide and Carbon. Materials Science Forum, 2004, 457-460, 59-62.	0.3	15
65	Synthesis of nanocrystalline ZnO by the thermal decomposition of [Zn(H2O)(O2C5H7)2] in isoamyl alcohol. Russian Journal of Inorganic Chemistry, 2017, 62, 1415-1425.	1.3	15
66	Sol-gel made titanium dioxide nanostructured thin films as gas-sensing materials for the detection of oxygen. Mendeleev Communications, 2018, 28, 164-166.	1.6	15
67	Nanocrystalline ZnO Obtained by the Thermal Decomposition of [Zn(H2O)(O2C5H7)2] in 1-Butanol: Synthesis and Testing as a Sensing Material. Russian Journal of Inorganic Chemistry, 2018, 63, 1519-1528.	1.3	15
68	Synthesis and Physicochemical Properties of Nanopowders and Ceramics in a CeO2–Gd2O3 System. Glass Physics and Chemistry, 2018, 44, 314-321.	0.7	15
69	Formation of Hierarchical NiO Coatings on the Surface of Al2O3 Substrates under Hydrothermal Conditions. Russian Journal of Inorganic Chemistry, 2020, 65, 1292-1297.	1.3	15
70	Gas-sensitive nanostructured ZnO films praseodymium and europium doped: Electrical conductivity, selectivity, influence of UV irradiation and humidity. Applied Surface Science, 2022, 589, 152974.	6.1	15
71	Coordination compounds with the general formula trans-[M(18-crown-6)(C5HO2F6)2] as structural-thermochemical analogs. The complexes trans-[Pb(18-crown-6)(C5HO2F6)2] and trans-[Ba(18-crown-6)(C5HO2F6)2]. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya. 2006. 32. 693-700.	1.0	14
72	Formation of One-Dimensional Hierarchical MoO3 Nanostructures under Hydrothermal Conditions. Russian Journal of Inorganic Chemistry, 2020, 65, 459-465.	1.3	14

#	Article	IF	CITATIONS
73	Bromobismuthates of 1,1'-(1,N-Alkanediyl)bis(picolines): Synthesis, Thermal Stability, Crystal Structures, and Optical Properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2020, 46, 111-118.	1.0	14
74	Reactive Hot Pressing of HfB2–SiC–Ta4HfC5 Ultra-High Temperature Ceramics. Russian Journal of Inorganic Chemistry, 2020, 65, 446-457.	1.3	14
75	Oxidation of graphene-modified HfB2-SiC ceramics by supersonic dissociated air flow. Journal of the European Ceramic Society, 2022, 42, 30-42.	5.7	14
76	Gel formation during sol–gel synthesis of silicon dioxide. Russian Journal of Inorganic Chemistry, 2015, 60, 1444-1451.	1.3	13
77	Study of the synthesis of nanocrystalline mixed tantalum–zirconium carbide. Physics of Atomic Nuclei, 2015, 78, 1357-1365.	0.4	13
78	Preparation of MB2/SiC and MB2/SiC-MC (M = Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics. Russian Journal of Inorganic Chemistry, 2016, 61, 1649-1676.	1.3	13
79	Preparation of HfB2/SiC composite powders by sol–gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 1483-1498.	1.3	13
80	Influence of the composition of [Ti(OC4H9)4 – x (O2C5H7) x] complexes and hydrolysis conditions on the synthesis of titania by sol–gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 929-939.	1.3	13
81	Glycol-citrate synthesis of fine-grained oxides La2â^'xGdxZr2O7 and preparation of corresponding ceramics using FAST/SPS process. Ceramics International, 2018, 44, 7647-7655.	4.8	12
82	Heat-Treatment-Induced Evolution of the Mesostructure of Finely Divided Y3Al5O12 Produced by the Sol–Gel Method. Russian Journal of Inorganic Chemistry, 2018, 63, 691-699.	1.3	12
83	Sol-gel synthesis of SiC@Y3Al5O12 composite nanopowder and preparation of porous SiC-ceramics derived from it. Materials Chemistry and Physics, 2019, 235, 121734.	4.0	12
84	A sol-gel synthesis and gas-sensing properties of finely dispersed ZrTiO4. Materials Chemistry and Physics, 2019, 225, 347-357.	4.0	12
85	Oxidation of Porous HfB2–SiC Ultra-High-Temperature Ceramic Materials Rich in Silicon Carbide (65) Tj ETQq1	1 0.78431 1.3	14 rgBT /Ovei 12
86	Pen Plotter Printing of MnOx Thin Films Using Manganese Alkoxoacetylacetonate. Russian Journal of Inorganic Chemistry, 2021, 66, 1416-1424.	1.3	12
87	The lead(II) complexes with 18-Crown-6, 1,1,1,5,5,5-hexafluoropentane-2,4-dionate and 1,1,1-trifluoropentate-2,4-dionate anions: Synthesis, structure, and thermochemical properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2008, 34, 157-166.	1.0	11
88	Synthesis, structure and thermochemical behavior of bis-(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)-(1,4,7,10,13,16-hexaoxa-cyclooctadecane)-strontium in comparison with its structural and thermochemical analogous. Inorganica Chimica Acta, 2009, 362, 5133-5138.	2.4	11
89	Preparation of nanostructured titania thin films by sol–gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 1505-1511.	1.3	11
90	Preparation of nanostructured thin films of yttrium iron garnet (Y3Fe5O12) by sol–gel technology. Russian Journal of Inorganic Chemistry, 2016, 61, 805-810.	1.3	11

NIKOLAY P SIMONENKO

#	Article	IF	CITATIONS
91	Tin Acetylacetonate as a Precursor for Producing Gas-Sensing SnO2 Thin Films. Russian Journal of Inorganic Chemistry, 2018, 63, 851-860.	1.3	11
92	Preparation of ZnS Nanopowders and Their Use in the Additive Production of Thick-Film Structures. Russian Journal of Inorganic Chemistry, 2021, 66, 1283-1288.	1.3	11
93	Production of porous ceramic materials using nanodisperse SiC powder. Russian Journal of Inorganic Chemistry, 2017, 62, 863-869.	1.3	10
94	Methyl viologen iodobismuthates. Polyhedron, 2018, 154, 430-435.	2.2	10
95	Transformations of Nanosized Boehmite and γ-Ðŀ2Đž3upon Heat Treatment. Russian Journal of Inorganic Chemistry, 2020, 65, 587-591.	1.3	10
96	Microstructure and local electrophysical properties of sol-gel derived (In2O3-10%SnO2)/V2O5 films. Colloids and Interface Science Communications, 2021, 43, 100452.	4.1	10
97	Modification of HfB2–30% SiC UHTC with Graphene (1 vol %) and Its Influence on the Behavior in a Supersonic Air Jet. Russian Journal of Inorganic Chemistry, 2021, 66, 1405-1415.	1.3	10
98	Vaporization of Molecular Strontium and Barium β-Diketonates [Sr(15C5)(C5O2F6H)2] and [Ba(18C6)(C5O2F6H)2]. Structure-Thermochemical Approach. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 755-758.	1.0	9
99	Gel formation specifics in the synthesis of Mg(Fe0.8Ga0.2)2O4 by the glycine–nitrate method. Russian Journal of Inorganic Chemistry, 2016, 61, 1301-1306.	1.3	9
100	Unexpected hydrolytic transformation of new type hybrid bromobismuthates with methylpyrazinium dications. Dalton Transactions, 2019, 48, 7602-7611.	3.3	9
101	Sol–Gel Synthesis of Functionally Graded SiC–TiC Ceramic Material. Russian Journal of Inorganic Chemistry, 2019, 64, 1456-1463.	1.3	9
102	Sol–Gel Synthesis of Highly Dispersed Tantalum Hafnium Carbide Ta4HfC5. Russian Journal of Inorganic Chemistry, 2019, 64, 1317-1324.	1.3	9
103	Crystallization Pathways of Cerium(IV) Phosphates Under Hydrothermal Conditions: A Search for New Phases with a Tunnel Structure. European Journal of Inorganic Chemistry, 2019, 2019, 3242-3248.	2.0	9
104	Synthesis of Boehmite Nanosized Powder (AlOOH) at Low Temperatures of Hydrothermal Treatment. Theoretical Foundations of Chemical Engineering, 2020, 54, 465-473.	0.7	9
105	Behavior of Ultra-High Temperature Ceramic Material HfB2–SiC–Y3Al5O12 under the Influence of Supersonic Dissociated Air Flow. Russian Journal of Inorganic Chemistry, 2020, 65, 1596-1605.	1.3	9
106	Features of Hydrothermal Growth of Hierarchical Co3O4 Coatings on Al2O3 Substrates. Russian Journal of Inorganic Chemistry, 2020, 65, 1304-1311.	1.3	9
107	Quantum of selectivity testing: detection of isomers and close homologs using an AZO based e-nose without <i>a prior</i> training. Journal of Materials Chemistry A, 2022, 10, 8413-8423.	10.3	9
108	Hydrothermally synthesized hierarchical Ce1-xSmxO2-δ oxides for additive manufacturing of planar solid electrolytes. Ceramics International, 2022, 48, 22401-22410.	4.8	9

#	Article	IF	CITATIONS
109	Intentional selection of coordination compounds with the required thermochemical properties on the basis of the cambridge bank of structural data. Russian Journal of Physical Chemistry A, 2012, 86, 1340-1351.	0.6	8
110	How xerogel carbonization conditions affect the reactivity of highly disperse SiO2–C composites in the sol–gel synthesis of nanocrystalline silicon carbide. Russian Journal of Inorganic Chemistry, 2016, 61, 1347-1360.	1.3	8
111	Oxidation of Ultra-High Temperature HfB2–SiC Ceramic Materials in Humid Air Flow. Russian Journal of Inorganic Chemistry, 2019, 64, 1849-1853.	1.3	8
112	One-stage synthesis of (Y0,5Bi0,5)3(Fe0,5Ga0,5)5O12 garnet using the organometallic gel auto-combustion approach. Ceramics International, 2019, 45, 4509-4513.	4.8	8
113	Microstructure, phase composition, and gas-sensing properties of nanostructured ZrO2-xY2O3 thin films and powders obtained by the sol-gel method. lonics, 2019, 25, 1259-1270.	2.4	8
114	Tin(ii) Hexafluoroacetylacetonate as a Precursor in Atmospheric Pressure Chemical Vapour Deposition: Synthesis, Structure and Properties. Mendeleev Communications, 2012, 22, 239-241.	1.6	7
115	SiO2 aerogels modified by perfluoro acid amides: a precisely controlled hydrophobicity. RSC Advances, 2016, 6, 80766-80772.	3.6	7
116	Sol–gel synthesis of iron yttrium garnet Y3Fe5O12 using metal acetylacetonates. Russian Journal of Inorganic Chemistry, 2017, 62, 1135-1140.	1.3	7
117	Synthesis, vaporization and thermodynamic properties of superfine yttrium aluminum garnet. Journal of Alloys and Compounds, 2018, 764, 397-405.	5.5	7
118	Superhydrophobic and luminescent highly porous nanostructured alumina monoliths modified with tris(8-hydroxyquinolinato)aluminium. Microporous and Mesoporous Materials, 2020, 293, 109804.	4.4	7
119	Mössbauer spectroscopy, XRPD, and SEM study of iron ontaining Na ₂ Oâ€B ₂ O ₃ ‣iO ₂ glasses. Journal of the American Ceramic Society, 2021, 104, 3149-3157.	3.8	7
120	Chemical durability of the iron-containing sodium borosilicate glasses. Journal of Non-Crystalline Solids, 2022, 584, 121519.	3.1	7
121	Finely dispersed refractory compounds for high-temperature ceramic matrix composite applications. Russian Journal of General Chemistry, 2010, 80, 658-665.	0.8	6
122	Preparation of highly porous Nb x Ta1–x C ceramics from polymer-matrix composite materials based on a phenol-formaldehyde binder and low hydrated hydroxide of niobium and tantalum. Inorganic Materials, 2015, 51, 1066-1072.	0.8	6
123	Influence of pH of solution on phase composition of samarium-strontium cobaltite powders synthesized by wet chemical technique. Journal of Sol-Gel Science and Technology, 2018, 87, 74-82.	2.4	6
124	Thermodynamic properties of lanthanum, neodymium, gadolinium hafnates (Ln2Hf2O7): Calorimetric and KEMS studies. Journal of Materials Research, 2019, 34, 3326-3336.	2.6	6
125	Effect of the Surface Relief of HfB2-SiC Ceramic Materials on Their High-Temperature Oxidation. Russian Journal of Inorganic Chemistry, 2019, 64, 1681-1686.	1.3	6
126	Production of ε-Fe2O3 Nanoparticles in Matrices Constituted by Closely Packed Silica Spheres. Russian Journal of Inorganic Chemistry, 2021, 66, 740-746.	1.3	6

#	Article	IF	CITATIONS
127	Solid-phase synthesis of protonated nitrogen-containing heterocyclic compounds with the boron cluster anions starting from [Eu(H2O)9]2[B10Cl10]3: Synthesis, structure, and thermal properties of (ĐŁ)2[B10Cl10] (L = 7-amino-4-methylcoumarin or 1-ethyl-2-(4-methoxyphenyl) azobenzimidazole). Journal of Solid State Chemistry, 2021, 302, 122413.	2.9	6
128	Synthesis of Nanoscale WO3 by Chemical Precipitation Using Oxalic Acid. Russian Journal of Inorganic Chemistry, 2021, 66, 1811-1816.	1.3	6
129	Synthesis of Mg(Fe0.8Ga0.2)2O4 by Gel Combustion Using Glycine and Starch. Russian Journal of Inorganic Chemistry, 2018, 63, 1257-1261.	1.3	5
130	Solid Solutions Having the α-NaFeO2 Structure in the Li1 +yCoO2–Li1 +yMnO2–Li1 +yNiO2–Li1 +yFeO2 System. Russian Journal of Inorganic Chemistry, 2020, 65, 573-580.	1.3	5
131	Effect of the Addition of Cerium Acetylacetonate on the Synthesis of ZnO Nanopowder. Russian Journal of Inorganic Chemistry, 2021, 66, 638-644.	1.3	5
132	Synthesis and structure of tin tetrachloride adducts with crown ether: Crystal structure of [Sn(H2O)2Cl4] · 18C6 and [Sn(H2O)2Cl4] · 18C6 · 2H2O. Russian Journal of Inorganic Chemistry, 2011, 56, 530-538.	1.3	4
133	Phase diagram of the ZnSnAs2–MnAs system. Journal of Alloys and Compounds, 2015, 626, 9-15.	5.5	4
134	Synthesis of MgFe1.6Ga0.4O4 by Gel Combustion Using Glycine and Hexamethylenetetramine. Russian Journal of Inorganic Chemistry, 2018, 63, 439-443.	1.3	4
135	Preparation and Characterization of MgH2 Mechanocomposites with Mg2NiH0.3 + Mg2NiH4 – δ Two-Phase Mixture. Russian Journal of Inorganic Chemistry, 2018, 63, 1529-1533.	1.3	4
136	Production and Oxidation Resistance of HfB2–30 vol % SiC Composite Powders Modified with Y3Al5O12. Russian Journal of Inorganic Chemistry, 2020, 65, 1416-1423.	1.3	4
137	Synthesis and Gas-Sensitive Chemoresistive Properties of TiO2:Cu Nanocomposite. Russian Journal of Inorganic Chemistry, 2021, 66, 594-602.	1.3	4
138	Synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3 – δOxide Promising as a Cathode Material of Modern Solid-Oxide Fuel Cells. Russian Journal of Inorganic Chemistry, 2021, 66, 662-666.	1.3	4
139	Dependence of the Reactivity of the Finely Divided System Ta2O5–HfO2–C on the Xerogel Carbonization Temperature. Russian Journal of Inorganic Chemistry, 2021, 66, 747-754.	1.3	4
140	Hydrothermal Synthesis of Ag Thin Films and Their SERS Application. Nanomaterials, 2022, 12, 136.	4.1	4
141	Formation of NiMoO4 Anisotropic Nanostructures under Hydrothermal Conditions. Russian Journal of Inorganic Chemistry, 2021, 66, 1779-1784.	1.3	4
142	Molecular structure of C(SiCl3)4 tetrakis-(trichlorosilyl)methane. Journal of Structural Chemistry, 2009, 50, 153-157.	1.0	3
143	The thermodynamic properties and thermal decomposition of octachlorotrisilane Si3Cl8. Russian Journal of Physical Chemistry A, 2009, 83, 179-181.	0.6	3
144	Tin trifluoroacetylacetonate [Sn(C5H4O2F3)2] as a precursor of tin dioxide in APCVD process. Russian Journal of Inorganic Chemistry, 2016, 61, 545-553.	1.3	3

#	Article	IF	CITATIONS
145	Polymer Technology of Porous SiC Ceramics Using Milled SiO2 Fibers. Russian Journal of Inorganic Chemistry, 2018, 63, 574-582.	1.3	3
146	Solid Solution Li(Ni,Mn,Co,Fe)O2 Homogeneity Range. Journal of Phase Equilibria and Diffusion, 2019, 40, 725-731.	1.4	3
147	Solid-State Synthesis of Lithium-Substituted Spinels Mg1–ÂxLixMnO3–ÂÎ′. Russian Journal of Inorganic Chemistry, 2019, 64, 1482-1485.	1.3	3
148	Highâ€ŧemperature mass spectrometric study of vaporization and thermodynamics of the Cs ₂ Oâ€B ₂ O ₃ system: Review and experimental investigation. Rapid Communications in Mass Spectrometry, 2021, 35, e9079.	1.5	3
149	Vaporization and thermodynamics of the Cs 2 O–MoO 3 system studied using highâ€ŧemperature mass spectrometry. Rapid Communications in Mass Spectrometry, 2021, 35, e9097.	1.5	3
150	Synthesis and Chemoresistive Gas-Sensing Properties of Highly Dispersed Titanium-Doped Nb2O5. Russian Journal of Inorganic Chemistry, 2021, 66, 1425-1433.	1.3	3
151	Nanostructured ZnO Films with Enhanced Sensitivity to CO Synthesized by AACVD. Russian Journal of Inorganic Chemistry, 2021, 66, 1447-1454.	1.3	3
152	A study of "The Portrait of F.P. Makerovsky in a Masquerade Costume―by Dmitry Levitsky from the collection of the State Tretyakov Gallery. Heritage Science, 2020, 8, .	2.3	3
153	On the Thermal Decomposition of Cerium(IV) Hydrogen Phosphate Ce(PO4)(HPO4)0.5(H2O)0.5. Russian Journal of Inorganic Chemistry, 2021, 66, 1624-1632.	1.3	3
154	Hydrothermal Synthesis of Hierarchical CoMoO4 Nanostructures. Russian Journal of Inorganic Chemistry, 2021, 66, 1633-1638.	1.3	3
155	Influence of Carbon Deficiency and Hafnium Oxide Doping on Reactive Spark Plasma Sintering of the Ta2O5–C System. Russian Journal of Inorganic Chemistry, 2021, 66, 1887-1894.	1.3	3
156	Gel decomposition and formation of MgFe1.6Ga0.4Đž4 powders. Russian Journal of Inorganic Chemistry, 2016, 61, 1026-1030.	1.3	2
157	Complexes of Cobalt and Copper Halides Based on 1,3-Dimethylimidazolium-4-Carboxylate. Journal of Structural Chemistry, 2019, 60, 1648-1654.	1.0	2
158	Metal Complexes with the N-Heterocyclic Ligand: Synthesis, Structures, and Thermal Decomposition. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 706-711.	1.0	2
159	Lanthanide Complexes Based on 1,3-Dimethylimidazolium-4-Carboxylate: Syntheses and Structures. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2019, 45, 799-803.	1.0	2
160	Solid State Synthesis and Reversible Oxygen Capacity of Li/Mg Overstoichiometric Solid Solutions Based on the Spinel MgMnO3 – l´. Russian Journal of Inorganic Chemistry, 2019, 64, 1335-1341.	1.3	2
161	Obtaining of La0.6Sr0.4Co0.2Fe0.8O3 – δ Nanopowder Using the Glycol–Citrate Method. Russian Journal of Inorganic Chemistry, 2021, 66, 477-481.	1.3	2
162	Samarium zirconate: Thermodynamics and vaporization at high temperatures. Materials Today Communications, 2021, 27, 102200.	1.9	2

NIKOLAY P SIMONENKO

#	Article	IF	CITATIONS
163	Microemulsion Synthesis of SnO2 Spheres Using Tin Acetylacetonate as a Precursor. Russian Journal of Inorganic Chemistry, 2019, 64, 1758-1761.	1.3	1
164	Synthesis and complex study of cerium(IV) fluoride hydrate. Journal of Fluorine Chemistry, 2020, 236, 109576.	1.7	1
165	Hybrid bromobismuthates: Synthesis, thermal stability and crystal structure of multicharged 3-ammoniopyridinium derivatives. Journal of Molecular Structure, 2020, 1221, 128807.	3.6	1
166	PZT 50/50 nanocrystalline powders with tetragonal structure prepared via gel combustion route: Effect of heat treatment on phase and chemical compositions. Ceramics International, 2021, 47, 16232-16239.	4.8	1
167	Palladium(I) Coordination Polymers with Unsaturated Dicarboxylic Acids with Stable Paramagnetic Centers. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 707-716.	1.0	1
168	Molecular structure of octachlorotrisilane Si3Cl8. Journal of Structural Chemistry, 2008, 49, 606-612.	1.0	0
169	Heating-induced transformation of pseudoboehmite and a mixture of pseudoboehmite, aluminum nitride, and aluminum oxide. Inorganic Materials, 2015, 51, 641-644.	0.8	0
170	Theoretical Ðjonsideration of Gas Phase Hydrolytic Stability of Crown Ether Based CVD-Precursors of Metal Oxides Thin Films. Macroheterocycles, 2015, 8, 185-192.	0.5	0