Hao Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4410920/publications.pdf

Version: 2024-02-01

840776 996975 16 608 11 15 citations h-index g-index papers 16 16 16 972 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Keratin 13 deficiency causes white sponge nevus in mice. Developmental Biology, 2020, 468, 146-153.	2.0	8
2	Functional redundancy of <i>Frizzled 3</i> and <i>Frizzled 6</i> in planar cell polarity control of mouse hair follicles. Development (Cambridge), 2018, 145, .	2.5	19
3	Intramembrane Proteolysis of Astrotactins. Journal of Biological Chemistry, 2017, 292, 3506-3516.	3.4	5
4	Cleave but not leave: Astrotactin proteins in development and disease. IUBMB Life, 2017, 69, 572-577.	3.4	8
5	Frizzled Receptors in Development and Disease. Current Topics in Developmental Biology, 2016, 117, 113-139.	2.2	112
6	The spatio-temporal domains of Frizzled6 action in planar polarity control of hair follicle orientation. Developmental Biology, 2016, 409, 181-193.	2.0	33
7	Identification of Astrotactin2 as a Genetic Modifier That Regulates the Global Orientation of Mammalian Hair Follicles. PLoS Genetics, 2015, 11, e1005532.	3.5	20
8	Partial interchangeability of <i>Fz3</i> and <i>Fz6</i> in tissue polarity signaling for epithelial orientation and axon growth and guidance. Development (Cambridge), 2014, 141, 3944-3954.	2.5	28
9	Flat Mount Imaging of Mouse Skin and Its Application to the Analysis of Hair Follicle Patterning and Sensory Axon Morphology. Journal of Visualized Experiments, 2014, , e51749.	0.3	17
10	Responses of hair follicle–associated structures to loss of planar cell polarity signaling. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E908-17.	7.1	29
11	Generation of Viable Male and Female Mice From 2 Fathers. Obstetrical and Gynecological Survey, 2011, 66, 216-218.	0.4	0
12	Generation of Viable Male and Female Mice from Two Fathers1. Biology of Reproduction, 2011, 84, 613-618.	2.7	23
13	When whorls collide: the development of hair patterns in frizzled 6 mutant mice. Development (Cambridge), 2010, 137, 4091-4099.	2.5	49
14	Overactive Beta-Catenin Signaling Causes Testicular Sertoli Cell Tumor Development in the Mouse1. Biology of Reproduction, 2009, 81, 842-849.	2.7	36
15	<i>Wt1</i> negatively regulates \hat{i}^2 -catenin signaling during testis development. Development (Cambridge), 2008, 135, 1875-1885.	2.5	151
16	Sox9 in Testis Determination. Annals of the New York Academy of Sciences, 2005, 1061, 9-17.	3.8	70