
Klaus Goergen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4410661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on regional convectionâ€permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics, 2015, 53, 323-361.	9.0	907
2	Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geoscientific Model Development, 2014, 7, 1297-1333.	1.3	711
3	The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Climate Dynamics, 2013, 41, 2555-2575.	1.7	290
4	Quantifying uncertainty sources in an ensemble of hydrological climateâ€impact projections. Water Resources Research, 2013, 49, 1523-1536.	1.7	284
5	Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Regional Environmental Change, 2020, 20, 1.	1.4	227
6	Precipitation in the EURO-CORDEX \$\$0.11^{circ }\$\$ 0 . 11 â~ and \$\$0.44^{circ }\$\$ 0 . 44 â~ simulations: high resolution, high benefits?. Climate Dynamics, 2016, 46, 383-412.	1.7	215
7	A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dynamics, 2020, 55, 3-34.	1.7	176
8	Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geoscientific Model Development, 2015, 8, 603-618.	1.3	175
9	The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation. Climate Dynamics, 2021, 57, 275-302.	1.7	114
10	The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation. Climate Dynamics, 2021, 56, 3581-3602.	1.7	101
11	Fire in Australian savannas: from leaf to landscape. Global Change Biology, 2015, 21, 62-81.	4.2	88
12	Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations. Climate Dynamics, 2016, 47, 719-737.	1.7	85
13	Landâ€atmosphere coupling in EUROâ€CORDEX evaluation experiments. Journal of Geophysical Research D: Atmospheres, 2017, 122, 79-103.	1.2	84
14	Studying the influence of groundwater representations on land surfaceâ€atmosphere feedbacks during the European heat wave in 2003. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,301.	1.2	74
15	Spatial and temporal variability of sea ice in the Laptev Sea: Analyses and review of satellite passive-microwave data and model results, 1979 to 2002. Global and Planetary Change, 2005, 48, 28-54.	1.6	73
16	Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe. Climate Dynamics, 2020, 55, 325-341.	1.7	59
17	Infiltration from the Pedon to Global Grid Scales: An Overview and Outlook for Land Surface Modeling. Vadose Zone Journal, 2019, 18, 1-53.	1.3	56
18	Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP) Tj ETQq0 0 0	rgBT /Ove 1.3	rlock 10 Tf 5 54

Geoscientific Model Development, 2014, 7, 2531-2543.

KLAUS GOERGEN

#	Article	IF	CITATIONS
19	Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. Environmental Research Letters, 2018, 13, 125010.	2.2	32
20	Influence of savanna fire on Australian monsoon season precipitation and circulation as simulated using a distributed computing environment. Geophysical Research Letters, 2007, 34, .	1.5	29
21	Inferring catchment precipitation by doing hydrology backward: A test in 24 small and mesoscale catchments in Luxembourg. Water Resources Research, 2012, 48, .	1.7	29
22	Modelling the impact of climate change on the productivity and water-use efficiency of a central European beech forest. Climate Research, 2013, 58, 81-95.	0.4	28
23	Pan-European groundwater to atmosphere terrestrial systems climatology from a physically consistent simulation. Scientific Data, 2019, 6, 320.	2.4	27
24	Impact of abrupt land cover changes by savanna fire on northern Australian climate. Journal of Geophysical Research, 2006, 111, .	3.3	25
25	Ensemble-based analysis of regional climate change effects on the cabbage stem weevil (<i>Ceutorhynchus pallidactylus</i> (Mrsh.)) in winter oilseed rape (<i>Brassica napus</i> L.). Journal of Agricultural Science, 2012, 150, 191-202.	0.6	25
26	Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis. Reviews of Geophysics, 2021, 59, e2020RG000715.	9.0	24
27	Improving soil moisture and runoff simulations at 3 km over Europe using land surface data assimilation. Hydrology and Earth System Sciences, 2019, 23, 277-301.	1.9	22
28	ENSEMBLES-based assessment of regional climate effects in Luxembourg and their impact on vegetation. Climatic Change, 2013, 119, 761-773.	1.7	19
29	Spring air temperature accounts for the bimodal temporal distribution of Septoria tritici epidemics in the winter wheat stands of Luxembourg. Crop Protection, 2012, 42, 250-255.	1.0	18
30	Landâ€Atmosphere Coupling Regimes in a Future Climate in Africa: From Model Evaluation to Projections Based on CORDEXâ€Africa. Journal of Geophysical Research D: Atmospheres, 2019, 124, 11118-11142.	1.2	18
31	Introduction of an Experimental Terrestrial Forecasting/Monitoring System at Regional to Continental Scales Based on the Terrestrial Systems Modeling Platform (v1.1.0). Water (Switzerland), 2018, 10, 1697.	1.2	17
32	Modelling study of soil C, N and pH response to air pollution and climate change using European LTER site observations. Science of the Total Environment, 2018, 640-641, 387-399.	3.9	17
33	Future Heat Waves in Different European Capitals Based on Climate Change Indicators. International Journal of Environmental Research and Public Health, 2019, 16, 3959.	1.2	16
34	Shifted migration of the rape stem weevil Ceutorhynchus napi (Coleoptera: Curculionidae) linked to climate change. European Journal of Entomology, 2014, 111, 243-250.	1.2	13
35	Internal variability versus multiâ€physics uncertainty in a regional climate model. International Journal of Climatology, 2021, 41, E656.	1.5	13
36	Effects of land surface inhomogeneity on convection-permitting WRF simulations over central Europe. Meteorology and Atmospheric Physics, 2020, 132, 53-69.	0.9	12

KLAUS GOERGEN

#	Article	IF	CITATIONS
37	An Interannual Probabilistic Assessment of Subsurface Water Storage Over Europe Using a Fully Coupled Terrestrial Model. Water Resources Research, 2021, 57, e2020WR027828.	1.7	11
38	ISPOL weather conditions in the context of long-term climate variability in the north-western Weddell Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 918-932.	0.6	9
39	A climate service for ecologists: sharing pre-processed EURO-CORDEX regional climate scenario data using the eLTER Information System. Earth System Science Data, 2021, 13, 631-644.	3.7	7
40	Boundary condition and oceanic impacts on the atmospheric water balance in limited area climate model ensembles. Scientific Reports, 2021, 11, 6228.	1.6	7
41	Groundwater Model Impacts Multiannual Simulations of Heat Waves. Geophysical Research Letters, 2022, 49, .	1.5	6
42	An observational and modelling analysis of Laptev Sea (Arctic Ocean) ice variations during summer. Annals of Glaciology, 2001, 33, 533-538.	2.8	4
43	The benefit of modeled ozone data for the reconstruction of a 99â€year UV radiation time series. Journal of Geophysical Research, 2012, 117, .	3.3	3
44	A run control framework to streamline profiling, porting, and tuning simulation runs and provenance tracking of geoscientific applications. Geoscientific Model Development, 2018, 11, 2875-2895.	1.3	3

4