
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4410595/publications.pdf Version: 2024-02-01

TINCYUE CU

#	Article	IF	CITATIONS
1	Optimization of metal bio-acid leaching from mobile phone printed circuit boards using natural organic acids and H2O2. Journal of Material Cycles and Waste Management, 2022, 24, 179-188.	3.0	3
2	Bioenergetics and extracellular electron transfer in microbial fuel cells and microbial corrosion. Current Opinion in Electrochemistry, 2022, 31, 100830.	4.8	26
3	Mitigation of sulfate reducing Desulfovibrio ferrophilus microbiologically influenced corrosion of X80 using THPS biocide enhanced by Peptide A. Journal of Materials Science and Technology, 2022, 107, 43-51.	10.7	10
4	Marine Vibrio spp. protect carbon steel against corrosion through secreting extracellular polymeric substances. Npj Materials Degradation, 2022, 6, .	5.8	15
5	Food-grade D-limonene enhanced a green biocide in the mitigation of carbon steel biocorrosion by a mixed-culture biofilm consortium. Bioprocess and Biosystems Engineering, 2022, , 1.	3.4	3
6	Evaluation of trehalase as an enhancer for a green biocide in the mitigation of Desulfovibrio vulgaris biocorrosion of carbon steel. Bioprocess and Biosystems Engineering, 2022, 45, 659-667.	3.4	7
7	Bacterial biofilms as platforms engineered for diverse applications. Biotechnology Advances, 2022, 57, 107932.	11.7	23
8	Biocorrosion of copper by nitrate reducing Pseudomonas aeruginosa with varied headspace volume. International Biodeterioration and Biodegradation, 2022, 171, 105405.	3.9	7
9	Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. Water Research, 2022, 219, 118553.	11.3	63
10	Mitigation of carbon steel biocorrosion using a green biocide enhanced by a nature-mimicking anti-biofilm peptide in a flow loop. Bioresources and Bioprocessing, 2022, 9, .	4.2	5
11	Conductive magnetite nanoparticles considerably accelerated carbon steel corrosion by electroactive Desulfovibrio vulgaris biofilm. Corrosion Science, 2022, 205, 110440.	6.6	25
12	Tafel scan schemes for microbiologically influenced corrosion of carbon steel and stainless steel. Journal of Materials Science and Technology, 2022, 130, 193-197.	10.7	12
13	Strategies for anti-oxidative stress and anti-acid stress in bioleaching of LiCoO2 using an acidophilic microbial consortium. Extremophiles, 2022, 26, .	2.3	4
14	Synergistic effect of chloride ion and Shewanella algae accelerates the corrosion of Ti-6Al-4V alloy. Journal of Materials Science and Technology, 2021, 71, 177-185.	10.7	45
15	Sulfate reducing bacterium Desulfovibrio vulgaris caused severe microbiologically influenced corrosion of zinc and galvanized steel. International Biodeterioration and Biodegradation, 2021, 157, 105160.	3.9	24
16	Biocorrosion caused by microbial biofilms is ubiquitous around us. Microbial Biotechnology, 2021, 14, 803-805.	4.2	30
17	Assessment of 2,2-Dibromo-3-Nitrilopropionamide Biocide Enhanced by D-Tyrosine against Zinc Corrosion by a Sulfate Reducing Bacterium. Industrial & Engineering Chemistry Research, 2021, 60, 4009-4018.	3.7	13
18	Ultrasound-assisted Fenton-like reagent to leach precious metals from spent automotive catalysts: process optimization and kinetic modeling. International Journal of Environmental Science and Technology, 2021, 18, 3449-3458.	3.5	5

#	Article	IF	CITATIONS
19	Comparison of 304 and 316 stainless steel microbiologically influenced corrosion by an anaerobic oilfield biofilm consortium. Engineering Failure Analysis, 2021, 122, 105275.	4.0	17
20	Stainless steel corrosion via direct iron-to-microbe electron transfer by <i>Geobacter</i> species. ISME Journal, 2021, 15, 3084-3093.	9.8	113
21	d-Tyrosine enhancement of microbiocide mitigation of carbon steel corrosion by a sulfate reducing bacterium biofilm. World Journal of Microbiology and Biotechnology, 2021, 37, 103.	3.6	8
22	Bioleaching and ecological toxicity assessment of carbide slag waste using Acidithiobacillus bacteria. Environmental Technology and Innovation, 2021, 22, 101480.	6.1	7
23	Adaptive bidirectional extracellular electron transfer during accelerated microbiologically influenced corrosion of stainless steel. Communications Materials, 2021, 2, .	6.9	46
24	Comparison of 304 SS, 2205 SS, and 410 SS Corrosion by Sulfate-Reducing Desulfovibrio ferrophilus. Journal of Chemistry, 2021, 2021, 1-10.	1.9	5
25	Enhanced bioenergy recovery and nutrient removal from swine wastewater using an airlift-type photosynthetic microbial fuel cell. Energy, 2021, 226, 120422.	8.8	26
26	Efficacy of glutaraldehyde enhancement by d-limonene in the mitigation of biocorrosion of carbon steel by an oilfield biofilm consortium. World Journal of Microbiology and Biotechnology, 2021, 37, 174.	3.6	4
27	Extracellular electron transfer in microbial biocorrosion. Current Opinion in Electrochemistry, 2021, 29, 100763.	4.8	45
28	Aggressive corrosion of carbon steel by Desulfovibrio ferrophilus IS5 biofilm was further accelerated by riboflavin. Bioelectrochemistry, 2021, 142, 107920.	4.6	35
29	Carbon Source Starvation of a Sulfate-Reducing Bacterium–Elevated MIC Deterioration of Tensile Strength and Strain of X80 Pipeline Steel. Frontiers in Materials, 2021, 8, .	2.4	4
30	Ultrasound-assisted leaching of vanadium from fly ash using lemon juice organic acids. RSC Advances, 2020, 10, 1685-1696.	3.6	32
31	Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes. Bioelectrochemistry, 2020, 133, 107478.	4.6	29
32	Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. Corrosion Science, 2020, 177, 108993.	6.6	86
33	Preliminary Investigation of Utilization of a Cellulose-Based Polymer in Enhanced Oil Recovery by Oilfield Anaerobic Microbes and its Impact on Carbon Steel Corrosion. Corrosion, 2020, 76, 766-772.	1.1	2
34	Mitigating microbiologically influenced corrosion of an oilfield biofilm consortium on carbon steel in enriched hydrotest fluid using 2,2-dibromo-3-nitrilopropionamide (DBNPA) enhanced by a 14-mer peptide. Journal of Materials Science and Technology, 2020, 57, 146-152.	10.7	27
35	Microbial ingress and in vitro degradation enhanced by glucose on bioabsorbable Mg–Li–Ca alloy. Bioactive Materials, 2020, 5, 902-916.	15.6	12
36	Inhibition effects of benzalkonium chloride on Chlorella vulgaris induced corrosion of carbon steel. Journal of Materials Science and Technology, 2020, 43, 14-20.	10.7	14

#	Article	lF	CITATIONS
37	Microbiologically influenced corrosion of 304 stainless steel by nitrate reducing Bacillus cereus in simulated Beijing soil solution. Bioelectrochemistry, 2020, 133, 107477.	4.6	25
38	Characteristics of oxidative stress and antioxidant defenses by a mixed culture of acidophilic bacteria in response to Co2+ exposure. Extremophiles, 2020, 24, 485-499.	2.3	8
39	Ultrasound-assisted leaching of spent lithium ion batteries by natural organic acids and H2O2. Chemosphere, 2020, 254, 126670.	8.2	58
40	Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa. Journal of Materials Science and Technology, 2020, 47, 10-19.	10.7	45
41	Photosynthetic Algal Microbial Fuel Cell for Simultaneous NH3-N Removal and Bioelectricity Generation. , 2020, , 145-154.		1
42	The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion. Corrosion Science, 2019, 150, 296-308.	6.6	63
43	Microbiologically Influenced Corrosion of Carbon Steel Beneath a Deposit in CO2-Saturated Formation Water Containing Desulfotomaculum nigrificans. Frontiers in Microbiology, 2019, 10, 1298.	3.5	34
44	Biofilm inhibition and corrosion resistance of 2205-Cu duplex stainless steel against acid producing bacterium Acetobacter aceti. Journal of Materials Science and Technology, 2019, 35, 2494-2502.	10.7	31
45	Laboratory investigation of microbiologically influenced corrosion of carbon steel in hydrotest using enriched artificial seawater inoculated with an oilfield biofilm consortium. Engineering Failure Analysis, 2019, 100, 544-555.	4.0	13
46	Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris. Corrosion Science, 2019, 153, 127-137.	6.6	78
47	Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2019, 128, 193-203.	4.6	60
48	Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corrosion Science, 2019, 150, 258-267.	6.6	114
49	Carbon dioxide sequestration accompanied by bioenergy generation using a bubbling-type photosynthetic algae microbial fuel cell. Bioresource Technology, 2019, 280, 95-103.	9.6	54
50	Effects of d-Phenylalanine as a biocide enhancer of THPS against the microbiologically influenced corrosion of C1018 carbon steel. Journal of Materials Science and Technology, 2019, 35, 109-117.	10.7	48
51	Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges. Renewable and Sustainable Energy Reviews, 2019, 103, 13-29.	16.4	171
52	Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International Biodeterioration and Biodegradation, 2019, 137, 42-58.	3.9	279
53	Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. Journal of Materials Science and Technology, 2019, 35, 631-636.	10.7	255
54	A sea anemone-inspired small synthetic peptide at sub-ppm concentrations enhanced biofilm mitigation. International Biodeterioration and Biodegradation, 2019, 139, 78-85.	3.9	28

#	Article	IF	CITATIONS
55	Oxidative Stress Induced by Metal Ions in Bioleaching of LiCoO2 by an Acidophilic Microbial Consortium. Frontiers in Microbiology, 2019, 10, 3058.	3.5	26
56	Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. Journal of Materials Science and Technology, 2018, 34, 1713-1718.	10.7	326
57	Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO2-saturated oilfield produced water with carbon source starvation. Corrosion Science, 2018, 136, 47-59.	6.6	104
58	Strong acid resistance from electrochemical deposition of WO ₃ on superâ€hydrophobic CuOâ€coated copper surface. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 978-984.	1.5	2
59	Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresource Technology, 2018, 261, 428-440.	9.6	146
60	Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnology Advances, 2018, 36, 1316-1327.	11.7	247
61	Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry, 2018, 123, 34-44.	4.6	62
62	Antimicrobial Cu-bearing 2205 duplex stainless steel against MIC by nitrate reducing Pseudomonas aeruginosa biofilm. International Biodeterioration and Biodegradation, 2018, 132, 132-138.	3.9	52
63	Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corrosion Science, 2018, 130, 1-11.	6.6	230
64	Preparation of super-hydrophobic micro-needle CuO surface as a barrier against marine atmospheric corrosion. Corrosion Science, 2018, 131, 156-163.	6.6	48
65	Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. International Biodeterioration and Biodegradation, 2018, 127, 1-9.	3.9	108
66	Carbon steel biocorrosion at 80 °C by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer. Corrosion Science, 2018, 145, 47-54.	6.6	48
67	Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria. Corrosion Science, 2018, 144, 237-248.	6.6	99
68	An enhanced oil recovery polymer promoted microbial growth and accelerated microbiologically influenced corrosion against carbon steel. Corrosion Science, 2018, 139, 301-308.	6.6	38
69	Endogenous phenazine-1-carboxamide encoding gene PhzH regulated the extracellular electron transfer in biocorrosion of stainless steel by marine Pseudomonas aeruginosa. Electrochemistry Communications, 2018, 94, 9-13.	4.7	89
70	Laboratory investigation of microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm using electrochemical noise. Corrosion Science, 2018, 143, 281-291.	6.6	55
71	Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water. Corrosion Science, 2017, 117, 24-34.	6.6	102
72	Empirical correlations for axial dispersion coefficient and Peclet number in fixed-bed columns. Journal of Chromatography A, 2017, 1490, 133-137.	3.7	60

#	Article	IF	CITATIONS
73	Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm. Journal of Materials Science and Technology, 2017, 33, 1596-1603.	10.7	85
74	Advances in the treatment of problematic industrial biofilms. World Journal of Microbiology and Biotechnology, 2017, 33, 97.	3.6	83
75	Experimental testing and numerical simulation to analyze the corrosion failures of single well pipelines in Tahe oilfield. Engineering Failure Analysis, 2017, 80, 112-122.	4.0	22
76	Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by d-amino acids. International Biodeterioration and Biodegradation, 2017, 117, 97-104.	3.9	68
77	Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals. International Biodeterioration and Biodegradation, 2017, 125, 116-124.	3.9	51
78	Mitigation of a nitrate reducing Pseudomonas aeruginosa biofilm and anaerobic biocorrosion using ciprofloxacin enhanced by D-tyrosine. Scientific Reports, 2017, 7, 6946.	3.3	35
79	Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Science, 2017, 127, 1-9.	6.6	169
80	Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 2017, 118, 38-46.	4.6	162
81	Electrochemical Testing of Biocide Enhancement by a Mixture of <scp>d</scp> -Amino Acids for the Prevention of a Corrosive Biofilm Consortium on Carbon Steel. Industrial & Engineering Chemistry Research, 2017, 56, 7640-7649.	3.7	56
82	Comparison of different electrochemical techniques for continuous monitoring of the microbiologically influenced corrosion of 2205 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. Corrosion Science, 2017, 126, 142-151.	6.6	56
83	The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria. Corrosion Science, 2017, 114, 102-111.	6.6	169
84	Effect of Cu Addition to 2205 Duplex Stainless Steel on the Resistance against Pitting Corrosion by the Pseudomonas aeruginosa Biofilm. Journal of Materials Science and Technology, 2017, 33, 723-727.	10.7	50
85	Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower. Frontiers in Microbiology, 2017, 8, 1538.	3.5	62
86	Anaerobic Corrosion of 304 Stainless Steel Caused by the Pseudomonas aeruginosa Biofilm. Frontiers in Microbiology, 2017, 8, 2335.	3.5	74
87	Enhanced Biocide Mitigation of Field Biofilm Consortia by a Mixture of D-Amino Acids. Frontiers in Microbiology, 2016, 7, 896.	3.5	61
88	Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 2016, 110, 52-58.	4.6	231
89	Antibacterial ability of a novel Cu-bearing 2205 duplex stainless steel against Pseudomonas aeruginosa biofilm in artificial seawater. International Biodeterioration and Biodegradation, 2016, 110, 199-205.	3.9	70
90	Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel. Corrosion Science, 2016, 113, 46-56.	6.6	64

#	Article	IF	CITATIONS
91	Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. Materials Science and Engineering C, 2016, 69, 744-750.	7.3	51
92	Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm. Scientific Reports, 2016, 6, 20190.	3.3	80
93	An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel. Scientific Reports, 2016, 6, 29244.	3.3	40
94	Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa. Corrosion Science, 2016, 111, 811-821.	6.6	110
95	Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors. Corrosion Science, 2016, 105, 149-160.	6.6	128
96	Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel. World Journal of Microbiology and Biotechnology, 2016, 32, 23.	3.6	3
97	Bioleaching of fuel-oil ash using Acidithiobacillus thiooxidans in shake flasks and a slurry bubble column bioreactor. RSC Advances, 2016, 6, 21756-21764.	3.6	30
98	The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria. Corrosion Science, 2016, 102, 93-102.	6.6	118
99	Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris. PLoS ONE, 2015, 10, e0136183.	2.5	57
100	Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corrosion Science, 2015, 100, 484-495.	6.6	208
101	Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine <i>Pseudomonas aeruginosa</i> biofilm. Biofouling, 2015, 31, 481-492.	2.2	89
102	Microbial fuel cells for biosensor applications. Biotechnology Letters, 2015, 37, 2357-2364.	2.2	102
103	Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Materials Science and Engineering C, 2015, 48, 228-234.	7.3	81
104	Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 2015, 101, 14-21.	4.6	267
105	Modeling of Slow Kinetics and Affinity Chromatography. , 2015, , 123-146.		0
106	Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion. Journal of Microbial & Biochemical Technology, 2014, 06, .	0.2	51
107	Bioelectrochemistry of Microbial Fuel Cells and their Potential Applications in Bioenergy. , 2014, , 131-152.		9
108	<scp>D</scp> â€Methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of <i>Desulfovibrio vulgaris</i> biofilm and biocorrosion pitting. Materials and Corrosion - Werkstoffe Und Korrosion, 2014, 65, 837-845.	1.5	42

TINGYUE GU

#	Article	IF	CITATIONS
109	Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. International Biodeterioration and Biodegradation, 2014, 91, 74-81.	3.9	273
110	Effects of Magnetic Fields on Microbiologically Influenced Corrosion of 304 Stainless Steel. Industrial & Engineering Chemistry Research, 2014, 53, 48-54.	3.7	38
111	Microbial fuel cells and microbial electrolysis cells for the production of bioelectricity and biomaterials. Environmental Technology (United Kingdom), 2013, 34, 1915-1928.	2.2	21
112	Comparison of fully-porous beads and cored beads in size exclusion chromatography for protein purification. Chemical Engineering Science, 2013, 102, 99-105.	3.8	13
113	Supercritical CO2and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environmental Technology (United Kingdom), 2013, 34, 1735-1749.	2.2	72
114	Recent advances in microbial fuel cells (<scp>MFCs</scp>) and microbial electrolysis cells (<scp>MECs</scp>) for wastewater treatment, bioenergy and bioproducts. Journal of Chemical Technology and Biotechnology, 2013, 88, 508-518.	3.2	211
115	Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis. Corrosion Science, 2013, 77, 385-390.	6.6	284
116	Parameter estimation and rate model simulation of partial breakthrough of bovine serum albumin on a column packed with large Q Sepharose anion-exchange particles. Separation and Purification Technology, 2013, 116, 319-326.	7.9	14
117	Pretreatment of Lignocellulosic Biomass Using Green Ionic Liquids. Springer Briefs in Molecular Science, 2013, , 127-153.	0.1	20
118	Pretreatment of Lignocellulosic Biomass Using Supercritical Carbon Dioxide as a Green Solvent. Springer Briefs in Molecular Science, 2013, , 107-125.	0.1	14
119	Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subsequent exposure to pipeline fluids with and without SRB spiking. Engineering Failure Analysis, 2013, 28, 149-159.	4.0	44
120	Converting Low-grade Biomass to Produce Energy Using Bio-fuel Cells. , 2013, , 73-97.		1
121	Biocide Cocktail Consisting of Glutaraldehyde, Ethylene Diamine Disuccinate (EDDS), and Methanol for the Mitigation of Souring and Biocorrosion. Corrosion, 2012, 68, 994-1002.	1.1	25
122	Wastewater Treatment with Concomitant Bioenergy Production Using Microbial Fuel Cells. , 2012, , 405-452.		2
123	Microbial Fuel Cells for Bioenergy and Bioproducts. Green Energy and Technology, 2012, , 131-171.	0.6	15
124	A synergistic d-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm. World Journal of Microbiology and Biotechnology, 2012, 28, 3067-3074.	3.6	60
125	d-amino acids for the enhancement of a binary biocide cocktail consisting of THPS and EDDS against an SRB biofilm. World Journal of Microbiology and Biotechnology, 2012, 28, 1641-1646.	3.6	27
126	Enhanced recovery of antitumor ganoderic acid T from <i>Ganoderma lucidum</i> mycelia by novel chemical conversion strategy. Biotechnology and Bioengineering, 2012, 109, 754-762.	3.3	15

#	Article	IF	CITATIONS
127	A green triple biocide cocktail consisting of a biocide, EDDS and methanol for the mitigation of planktonic and sessile sulfate-reducing bacteria. World Journal of Microbiology and Biotechnology, 2012, 28, 431-435.	3.6	21
128	New Understandings of Biocorrosion Mechanisms and their Classifications. Journal of Microbial & Biochemical Technology, 2012, 04, .	0.2	85
129	A general rate model approach for the optimization of the core radius fraction for multicomponent isocratic elution in preparative nonlinear liquid chromatography using cored beads. Chemical Engineering Science, 2011, 66, 3531-3539.	3.8	17
130	Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresource Technology, 2011, 102, 6995-7000.	9.6	159
131	Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction. Applied Microbiology and Biotechnology, 2010, 86, 1367-1374.	3.6	73
132	Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World Journal of Microbiology and Biotechnology, 2010, 26, 1053-1057.	3.6	22
133	A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde. International Biodeterioration and Biodegradation, 2009, 63, 1102-1106.	3.9	84
134	KINETIC MODELING OF CELL GROWTH AND PRODUCT FORMATION IN SUBMERGED CULTURE OF RECOMBINANT <i>ASPERGILLUS NIGER</i> . Chemical Engineering Communications, 2008, 196, 481-490.	2.6	19
135	PARTITION COEFFICIENTS OF SOME ANTIBIOTICS, PEPTIDES AND AMINO ACIDS IN LIQUID-LIQUID PARTITIONING OF THE ACETONITRILE-WATER SYSTEM AT SUBZERO TEMPERATURES. Chemical Engineering Communications, 2007, 194, 828-834.	2.6	19
136	A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 2007, 25, 464-482.	11.7	1,360
137	Separation of targeted ganoderic acids from Ganoderma lucidum by reversed phase liquid chromatography with ultraviolet and mass spectrometry detections. Biochemical Engineering Journal, 2006, 32, 205-210.	3.6	51
138	Synthesis of Rigid Cyclodextrin-Containing Polymeric Resins for Adsorption. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 56, 375-379.	1.6	14
139	Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnology Advances, 2005, 23, 115-129.	11.7	134
140	Production of recombinant plant gum with tobacco cell culture in bioreactor and gum characterization. Biotechnology and Bioengineering, 2005, 90, 578-588.	3.3	28
141	Rigid gigaporous chromatographic media and their potential impact on downstream processing. Particuology: Science and Technology of Particles, 2005, 3, 349-353.	0.4	5
142	Data Acquisition and Control of a 22 L B. Braun Fermenter Using LabVIEW. Chemical Engineering Communications, 2005, 192, 137-144.	2.6	5
143	Modeling of Immobilized Cell Columns for Bioconversion and Wastewater Treatment. Biotechnology Progress, 2004, 20, 1460-1466.	2.6	3
144	Enhanced amylase production by Bacillus subtilis using a dual exponential feeding strategy. Bioprocess and Biosystems Engineering, 2004, 27, 63-69.	3.4	34

TINGYUE GU

#	Article	IF	CITATIONS
145	Effects of process parameters on heterologous protein production inAspergillus niger fermentation. Journal of Chemical Technology and Biotechnology, 2003, 78, 1259-1266.	3.2	44
146	A segregated model for heterologous amylase production by Bacillus subtilis. Enzyme and Microbial Technology, 2003, 32, 407-413.	3.2	26
147	Scale-up of affinity chromatography for purification of enzymes and other proteins. Enzyme and Microbial Technology, 2003, 33, 430-437.	3.2	20
148	Analysis of fatty acids in mouse cells using reversed-phase high-performance liquid chromatography. Chromatographia, 2001, 54, 463-467.	1.3	21
149	Enhanced heterologous protein production in Aspergillus niger through pH control of extracellular protease activity. Biochemical Engineering Journal, 2001, 8, 187-193.	3.6	52
150	Title is missing!. Biotechnology Letters, 2001, 23, 1109-1113.	2.2	16
151	Increased Heterologous Protein Production in Aspergillus niger Fermentation through Extracellular Proteases Inhibition by Pelleted Growth. Biotechnology Progress, 2000, 16, 222-227.	2.6	59
152	Liquid-liquid partitioning methods for bioseparations. Separation Science and Technology, 2000, 2, 329-364.	0.2	14
153	A study of the scale-up of reversed-phase liquid chromatography. Separation and Purification Technology, 1999, 15, 41-58.	7.9	34
154	Inhibition of extracellular protease secretion by Aspergillus niger using cell immobilization. Biotechnology Letters, 1998, 20, 539-542.	2.2	32
155	Production of poly-β-hydroxybutyrate on molasses by recombinant Escherichia coli. Biotechnology Letters, 1998, 20, 345-348.	2.2	60
156	Modified van der Waals Equation for the Prediction of Multicomponent Isotherms. Journal of Colloid and Interface Science, 1998, 206, 457-463.	9.4	19
157	Mathematical modeling and scale-up of size-exclusion chromatography. Biochemical Engineering Journal, 1998, 2, 145-155.	3.6	55
158	Liquid-liquid equilibrium of the acetonitrile-water system for protein purification. Separation and Purification Technology, 1996, 6, 261-264.	0.7	28
159	Analytical solution to a model for the startup period of fixed-bed reactors. Chemical Engineering Science, 1996, 51, 3773-3779.	3.8	18
160	Purification of a pyrogen-free human growth hormone antagonist. Biotechnology and Bioengineering, 1995, 48, 520-528.	3.3	11
161	Mathematical Modeling and Scale-up of Liquid Chromatography. , 1995, , .		71
162	Effects of growth hormone antagonists on 3T3-F442A preadipocyte differentiation. Journal of Endocrinology, 1995, 146, 131-139.	2.6	17

TINGYUE GU

#	Article	IF	CITATIONS
163	Phase separation of acetonitrile-water mixture in protein purification. Separation and Purification Technology, 1994, 4, 258-260.	0.7	38
164	Multicomponent affinity radial flow chromatography. Separation and Purification Technology, 1992, 2, 176-182.	0.7	5
165	Modeling of gradient elution in multicomponent nonlinear chromatography. Chemical Engineering Science, 1992, 47, 253-262.	3.8	44
166	Simulation of multicomponent elution with the mobile phase containing competing modifiers. Separation and Purification Technology, 1991, 1, 184-194.	0.7	0
167	A theoretical study of multicomponent radial flow chromatography. Chemical Engineering Science, 1991, 46, 1279-1288.	3.8	30
168	Some considerations for optimization of desorption chromatography. Biotechnology and Bioengineering, 1991, 37, 65-70.	3.3	8
169	Multicomponent adsorption and chromatography with uneven saturation capacities. AICHE Journal, 1991, 37, 1333-1340.	3.6	48
170	New approach to a general nonlinear multicomponent chromatography model. AICHE Journal, 1990, 36, 784-788.	3.6	51
171	Displacement effect in multicomponent chromatography. AICHE Journal, 1990, 36, 1156-1162.	3.6	32
172	Preliminary Proof-of-Concept Testing of Novel Antimicrobial Heat-Conducting "Metallic―Coatings	3.5	1

⁷² Against Biofouling and Biocorrosion. Frontiers in Microbiology, 0, 13, .