Hugo M Botelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4410550/publications.pdf

Version: 2024-02-01

516710 501196 29 795 16 28 citations g-index h-index papers 29 29 29 1318 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Systems Approaches to Unravel Molecular Function: High-content siRNA Screen Identifies TMEM16A Traffic Regulators as Potential Drug Targets for Cystic Fibrosis. Journal of Molecular Biology, 2022, 434, 167436.	4.2	3
2	CFTR interactome mapping using the mammalian membrane twoâ€hybrid highâ€throughput screening system. Molecular Systems Biology, 2022, 18, e10629.	7.2	13
3	Exploring YAP1-centered networks linking dysfunctional CFTR to epithelial–mesenchymal transition. Life Science Alliance, 2022, 5, e202101326.	2.8	6
4	Searching for a Paradigm Shift in Auger-Electron Cancer Therapy with Tumor-Specific Radiopeptides Targeting the Mitochondria and/or the Cell Nucleus. International Journal of Molecular Sciences, 2022, 23, 7238.	4.1	4
5	An open-source high-content analysis workflow for CFTR function measurements using the forskolin-induced swelling assay. Bioinformatics, 2021, 36, 5686-5694.	4.1	6
6	CFTR processing, trafficking and interactions. Journal of Cystic Fibrosis, 2020, 19, S33-S36.	0.7	19
7	Organoids as a personalized medicine tool for ultra-rare mutations in cystic fibrosis: The case of S955P and 1717-2A>G. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165905.	3.8	7
8	Full Rescue of F508del-CFTR Processing and Function by CFTR Modulators Can Be Achieved by Removal of Two Regulatory Regions. International Journal of Molecular Sciences, 2020, 21, 4524.	4.1	8
9	R560S: A class II CFTR mutation that is not rescued by current modulators. Journal of Cystic Fibrosis, 2019, 18, 182-189.	0.7	25
10	Folding Status Is Determinant over Traffic-Competence in Defining CFTR Interactors in the Endoplasmic Reticulum. Cells, 2019, 8, 353.	4.1	21
11	Unravelling the antitumoral potential of novel bis(thiosemicarbazonato) Zn(II) complexes: structural and cellular studies. Journal of Biological Inorganic Chemistry, 2019, 24, 71-89.	2.6	7
12	A novel microscopy-based assay identifies extended synaptotagmin-1 (ESYT1) as a positive regulator of anoctamin 1 traffic. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 421-431.	4.1	19
13	The neuronal S100B protein is a calcium-tuned suppressor of amyloid- \hat{l}^2 aggregation. Science Advances, 2018, 4, eaaq1702.	10.3	49
14	Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides. Human Mutation, 2016, 37, 209-215.	2.5	66
15	Investigating Alternative Transport of Integral Plasma Membrane Proteins from the ER to the Golgi: Lessons from the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Methods in Molecular Biology, 2016, 1459, 105-126.	0.9	7
16	Protein Traffic Disorders: an Effective High-Throughput Fluorescence Microscopy Pipeline for Drug Discovery. Scientific Reports, 2015, 5, 9038.	3.3	55
17	Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics, 2015, 106, 268-277.	2.9	32
18	Structural Heterogeneity and Bioimaging of S100 Amyloid Assemblies. , 2014, , 197-212.		4

#	Article	lF	CITATION
19	BIOCHEMICAL AND BIOPHYSICAL CHARACTERIZATION OF RECOMBINANT YEAST PROTEASOME MATURATION FACTOR UMP1. Computational and Structural Biotechnology Journal, 2013, 7, e201304006.	4.1	20
20	Intrinsically Disordered and Aggregation Prone Regions Underlie \hat{l}^2 -Aggregation in S100 Proteins. PLoS ONE, 2013, 8, e76629.	2.5	22
21	The Sulfur Oxygenase Reductase from the Mesophilic Bacterium Halothiobacillus neapolitanus Is a Highly Active Thermozyme. Journal of Bacteriology, 2012, 194, 677-685.	2.2	30
22	Analysis of S100 Oligomers and Amyloids. Methods in Molecular Biology, 2012, 849, 373-386.	0.9	23
23	S100A6 Amyloid Fibril Formation Is Calcium-modulated and Enhances Superoxide Dismutase-1 (SOD1) Aggregation. Journal of Biological Chemistry, 2012, 287, 42233-42242.	3.4	36
24	Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coordination Chemistry Reviews, 2012, 256, 2253-2270.	18.8	147
25	Structural reorganization renders enhanced metalloprotein stability. Chemical Communications, 2011, 47, 11149.	4.1	1
26	Role of a novel disulfide bridge within the all-beta fold of soluble Rieske proteins. Journal of Biological Inorganic Chemistry, 2010, 15, 271-281.	2.6	7
27	Natural and amyloid selfâ€assembly of S100 proteins: structural basis of functional diversity. FEBS Journal, 2010, 277, 4578-4590.	4.7	115
28	Metal ions modulate the folding and stability of the tumor suppressor protein S100A2. FEBS Journal, 2009, 276, 1776-1786.	4.7	29
29	A Proteomic Approach toward the Selection of Proteins with Enhanced Intrinsic Conformational Stability. Journal of Proteome Research, 2006, 5, 2720-2726.	3.7	14