David Becker-Koch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/441049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxygen-induced degradation in AgBiS ₂ nanocrystal solar cells. Nanoscale, 2022, 14, 3020-3030.	5.6	6
2	Highly efficient modulation doping: A path toward superior organic thermoelectric devices. Science Advances, 2022, 8, eabl9264.	10.3	15
3	Traps and transport resistance are the next frontiers for stable non-fullerene acceptor solar cells. Nature Communications, 2022, 13, .	12.8	23
4	Influence of synthetic pathway, molecular weight and side chains on properties of indacenodithiophene-benzothiadiazole copolymers made by direct arylation polycondensation. Journal of Materials Chemistry C, 2021, 9, 4597-4606.	5.5	5
5	Stability of Quantum Dot Solar Cells: A Matter of (Life)Time. Advanced Energy Materials, 2021, 11, 2003457.	19.5	57
6	Doped Organic Hole Extraction Layers in Efficient PbS and AgBiS ₂ Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 18750-18757.	8.0	16
7	Small grains as recombination hot spots in perovskite solar cells. Matter, 2021, 4, 1683-1701.	10.0	73
8	Efficient Thermally Evaporated γ sPbl ₃ Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100299.	19.5	35
9	Temperature-dependent morphology-electron mobility correlations of naphthalene diimide-indacenodithiophene copolymers prepared <i>via</i> direct arylation polymerization. Materials Advances, 2021, 2, 7881-7890.	5.4	6
10	Efficient and Stable PbS Quantum Dot Solar Cells by Triple-Cation Perovskite Passivation. ACS Nano, 2020, 14, 384-393.	14.6	58
11	Ligand dependent oxidation dictates the performance evolution of high efficiency PbS quantum dot solar cells. Sustainable Energy and Fuels, 2020, 4, 108-115.	4.9	27
12	Laser printed metal halide perovskites. JPhys Materials, 2020, 3, 034010.	4.2	5
13	Roomâ€Temperature Stimulated Emission and Lasing in Recrystallized Cesium Lead Bromide Perovskite Thin Films. Advanced Materials, 2019, 31, e1903717.	21.0	148
14	Enhancing the Openâ€Circuit Voltage of Perovskite Solar Cells by up to 120 mV Using ï€â€Extended Phosphoniumfluorene Electrolytes as Hole Blocking Layers. Advanced Energy Materials, 2019, 9, 1901257.	19.5	31
15	Oxygen-Induced Doping as a Degradation Mechanism in Highly Efficient Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 1943-1950.	5.1	29
16	The effect of side-chain length on the microstructure and processing window of zone-cast naphthalene-based bispentalenes. Journal of Materials Chemistry C, 2019, 7, 13493-13501.	5.5	14
17	Probing charge transfer states at organic and hybrid internal interfaces by photothermal deflection spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 124001.	1.8	9
18	Fluorination of Organic Spacer Impacts on the Structural and Optical Response of 2D Perovskites. Frontiers in Chemistry, 2019, 7, 946.	3.6	14

DAVID BECKER-KOCH

#	Article	IF	CITATIONS
19	<i>N</i> -Heteroacenes as a New Class of Non-Fullerene Electron Acceptors for Organic Bulk-Heterojunction Photovoltaic Devices. Solar Rrl, 2017, 1, 1700053.	5.8	30
20	Role of Microstructure in Oxygen Induced Photodegradation of Methylammonium Lead Triiodide Perovskite Films. Advanced Energy Materials, 2017, 7, 1700977.	19.5	183
21	High performance planar perovskite solar cells by ZnO electron transport layer engineering. Nano Energy, 2017, 39, 400-408.	16.0	120
22	Acquisition of photoelectron diffraction patterns with a two-dimensional wide-angle electron analyzer. Journal of Electron Spectroscopy and Related Phenomena, 2014, 197, 30-36.	1.7	9
23	Modelling Self-Absorption Induced Red-Shift of the Photoluminescence of Perovskite Thin Films to Estimate the Internal Photoluminescence Quantum Efficiency and Escape Probability. , 0, , .		0