Ki Young Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4410133/publications.pdf

Version: 2024-02-01

		81434	169272
57	6,273	41	56
papers	citations	h-index	g-index
59	59	59	10681
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surface-Functionalized Polymeric siRNA Nanoparticles for Tunable Targeting and Intracellular Delivery to Hematologic Cancer Cells. Biomacromolecules, 2022, 23, 2255-2263.	2.6	6
2	Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioactive Materials, 2022, 14, 182-205.	8.6	19
3	Discovery and Photoisomerization of New Pyrrolosesquiterpenoids Glaciapyrroles D and E, from Deep-Sea Sediment Streptomyces sp Marine Drugs, 2022, 20, 281.	2.2	5
4	Schisandrin C improves leaky gut conditions in intestinal cell monolayer, organoid, and nematode models by increasing tight junction protein expression. Phytomedicine, 2022, 103, 154209.	2.3	6
5	2D to 3D transformation of gold nanosheets on human adipose-derived α-elastin nanotemplates. Journal of Industrial and Engineering Chemistry, 2021, 95, 66-72.	2.9	O
6	Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines, 2021, 9, 305.	1.4	181
7	Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. Journal of Controlled Release, 2020, 320, 328-336.	4.8	34
8	Dual-targeting RNA nanoparticles for efficient delivery of polymeric siRNA to cancer cells. Chemical Communications, 2020, 56, 6624-6627.	2.2	17
9	Control of a toxic cyanobacterial bloom species, Microcystis aeruginosa, using the peptide HPA3NT3-A2. Environmental Science and Pollution Research, 2019, 26, 32255-32265.	2.7	7
10	Binary Targeting of siRNA to Hematologic Cancer Cells In Vivo Using Layerâ€by‣ayer Nanoparticles. Advanced Functional Materials, 2019, 29, 1900018.	7.8	86
11	Size-controlled synthesis of polymerized DNA nanoparticles for targeted anticancer drug delivery. Chemical Communications, 2019, 55, 4905-4908.	2.2	21
12	Hyaluronic Acid–Based Activatable Nanomaterials for Stimuliâ€Responsive Imaging and Therapeutics: Beyond CD44â€Mediated Drug Delivery. Advanced Materials, 2019, 31, e1803549.	11.1	188
13	Intracellularly Activatable Nanovasodilators To Enhance Passive Cancer Targeting Regime. Nano Letters, 2018, 18, 2637-2644.	4. 5	71
14	Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis. Biomaterials, 2017, 131, 15-26.	5 . 7	128
15	Nanostructures: Highly Scalable, Closed-Loop Synthesis of Drug-Loaded, Layer-by-Layer Nanoparticles (Adv. Funct. Mater. 7/2016). Advanced Functional Materials, 2016, 26, 990-990.	7.8	O
16	Long-Circulating Au-TiO ₂ Nanocomposite as a Sonosensitizer for ROS-Mediated Eradication of Cancer. Nano Letters, 2016, 16, 6257-6264.	4.5	328
17	Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation. ACS Nano, 2016, 10, 10858-10868.	7.3	96
18	Highly Scalable, Closedâ€Loop Synthesis of Drugâ€Loaded, Layerâ€byâ€Layer Nanoparticles. Advanced Functional Materials, 2016, 26, 991-1003.	7.8	67

#	Article	IF	Citations
19	Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair. ACS Nano, 2016, 10, 4441-4450.	7.3	193
20	Tumor-Targeted Synergistic Blockade of MAPK and PI3K from a Layer-by-Layer Nanoparticle. Clinical Cancer Research, 2015, 21, 4410-4419.	3.2	55
21	Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy. Journal of Controlled Release, 2015, 200, 158-166.	4.8	101
22	Bioreducible Shell-Cross-Linked Hyaluronic Acid Nanoparticles for Tumor-Targeted Drug Delivery. Biomacromolecules, 2015, 16, 447-456.	2.6	114
23	Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials, 2015, 53, 341-348.	5.7	116
24	Inhibition of Notch signalling ameliorates experimental inflammatory arthritis. Annals of the Rheumatic Diseases, 2015, 74, 267-274.	0.5	73
25	The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials, 2014, 35, 856-865.	5.7	67
26	Design Considerations of Iron-Based Nanoclusters for Noninvasive Tracking of Mesenchymal Stem Cell Homing. ACS Nano, 2014, 8, 4403-4414.	7.3	89
27	Bioreducible Carboxymethyl Dextran Nanoparticles for Tumorâ€₹argeted Drug Delivery. Advanced Healthcare Materials, 2014, 3, 1829-1838.	3.9	91
28	Versatile RNA Interference Nanoplatform for Systemic Delivery of RNAs. ACS Nano, 2014, 8, 4559-4570.	7.3	93
29	A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nature Protocols, 2014, 9, 1900-1915.	5. 5	44
30	Self-assembled dextran sulphate nanoparticles for targeting rheumatoid arthritis. Chemical Communications, 2013, 49, 10349-10351.	2.2	57
31	Photo-crosslinked hyaluronic acid nanoparticles with improved stability for inÂvivo tumor-targeted drug delivery. Biomaterials, 2013, 34, 5273-5280.	5.7	95
32	Effect of Injection Routes on the Biodistribution, Clearance, and Tumor Uptake of Carbon Dots. ACS Nano, 2013, 7, 5684-5693.	7.3	332
33	Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials, 2013, 34, 1772-1780.	5.7	147
34	Bibliometric Analysis of Theranostics: Two Years in the Making. Theranostics, 2013, 3, 527-531.	4.6	4
35	Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials, 2012, 33, 6186-6193.	5.7	139
36	Facilitated intracellular delivery of peptide-guided nanoparticles in tumor tissues. Journal of Controlled Release, 2012, 157, 493-499.	4.8	41

#	Article	IF	CITATIONS
37	Amphiphilic hyaluronic acid-based nanoparticles for tumor-specific optical/MR dual imaging. Journal of Materials Chemistry, 2012, 22, 10444.	6.7	28
38	Hyaluronic acid-based nanocarriers for intracellular targeting: Interfacial interactions with proteins in cancer. Colloids and Surfaces B: Biointerfaces, 2012, 99, 82-94.	2.5	221
39	Real-time monitoring of caspase cascade activation in living cells. Journal of Controlled Release, 2012, 163, 55-62.	4.8	22
40	Site-Specific PEGylated Exendin-4 Modified with a High Molecular Weight Trimeric PEG Reduces Steric Hindrance and Increases Type 2 Antidiabetic Therapeutic Effects. Bioconjugate Chemistry, 2012, 23, 2214-2220.	1.8	42
41	Protease-Activated Drug Development. Theranostics, 2012, 2, 156-179.	4.6	203
42	Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale, 2012, 4, 330-342.	2.8	393
43	A Facile, One-Step Nanocarbon Functionalization for Biomedical Applications. Nano Letters, 2012, 12, 3613-3620.	4.5	82
44	Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials, 2012, 33, 3980-3989.	5.7	268
45	Rýcktitelbild: Sticky Nanoparticles: A Platform for siRNA Delivery by a Bis(zinc(II)) Tj ETQq1 1 0.784314 rgBT /Ov Chemie, 2012, 124, 576-576.	verlock 10 1.6	Tf 50 427 0
46	Sticky Nanoparticles: A Platform for siRNA Delivery by a Bis(zinc(II) dipicolylamine)â€Functionalized, Selfâ€Assembled Nanoconjugate. Angewandte Chemie - International Edition, 2012, 51, 445-449.	7.2	90
47	Multiplex Imaging of an Intracellular Proteolytic Cascade by using a Broadâ€Spectrum Nanoquencher. Angewandte Chemie - International Edition, 2012, 51, 1625-1630.	7.2	60
48	Back Cover: Sticky Nanoparticles: A Platform for siRNA Delivery by a Bis(zinc(II)) Tj ETQq0 0 0 rgBT /Overlock 10 Tf Angewandte Chemie - International Edition, 2012, 51, 558-558.	50 307 To	d (dipicolyla 1
49	Manipulating the Power of an Additional Phase: A Flower-like Auâ^'Fe ₃ O ₄ Optical Nanosensor for Imaging Protease Expressions <i>In vivo</i> . ACS Nano, 2011, 5, 3043-3051.	7.3	98
50	Real Time, High Resolution Video Imaging of Apoptosis in Single Cells with a Polymeric Nanoprobe. Bioconjugate Chemistry, 2011, 22, 125-131.	1.8	51
51	Smart Nanocarrier Based on PEGylated Hyaluronic Acid for Cancer Therapy. ACS Nano, 2011, 5, 8591-8599.	7.3	360
52	PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials, 2011, 32, 1880-1889.	5.7	298
53	Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials, 2010, 31, 9057-9064.	5.7	55
54	Hydrotropic hyaluronic acid conjugates: Synthesis, characterization, and implications as a carrier of paclitaxel. International Journal of Pharmaceutics, 2010, 394, 154-161.	2.6	88

Ki Young Choi

#	Article	IF	CITATIONS
55	Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials, 2010, 31, 106-114.	5.7	500
56	Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. Journal of Materials Chemistry, 2009, 19, 4102.	6.7	240
57	Preparation and characterization of hyaluronic acid-based hydrogel nanoparticles. Journal of Physics and Chemistry of Solids, 2008, 69, 1591-1595.	1.9	35