
Ki Young Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4410133/publications.pdf Version: 2024-02-01

KI YOUNG CHOL

#	Article	lF	CITATIONS
1	Self-assembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials, 2010, 31, 106-114.	11.4	500
2	Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale, 2012, 4, 330-342.	5.6	393
3	Smart Nanocarrier Based on PEGylated Hyaluronic Acid for Cancer Therapy. ACS Nano, 2011, 5, 8591-8599.	14.6	360
4	Effect of Injection Routes on the Biodistribution, Clearance, and Tumor Uptake of Carbon Dots. ACS Nano, 2013, 7, 5684-5693.	14.6	332
5	Long-Circulating Au-TiO ₂ Nanocomposite as a Sonosensitizer for ROS-Mediated Eradication of Cancer. Nano Letters, 2016, 16, 6257-6264.	9.1	328
6	PEGylation of hyaluronic acid nanoparticles improves tumor targetability in vivo. Biomaterials, 2011, 32, 1880-1889.	11.4	298
7	Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials, 2012, 33, 3980-3989.	11.4	268
8	Self-assembled hyaluronic acid nanoparticles as a potential drug carrier for cancer therapy: synthesis, characterization, and in vivo biodistribution. Journal of Materials Chemistry, 2009, 19, 4102.	6.7	240
9	Hyaluronic acid-based nanocarriers for intracellular targeting: Interfacial interactions with proteins in cancer. Colloids and Surfaces B: Biointerfaces, 2012, 99, 82-94.	5.0	221
10	Protease-Activated Drug Development. Theranostics, 2012, 2, 156-179.	10.0	203
11	Designer Dual Therapy Nanolayered Implant Coatings Eradicate Biofilms and Accelerate Bone Tissue Repair. ACS Nano, 2016, 10, 4441-4450.	14.6	193
12	Hyaluronic Acid–Based Activatable Nanomaterials for Stimuliâ€Responsive Imaging and Therapeutics: Beyond CD44â€Mediated Drug Delivery. Advanced Materials, 2019, 31, e1803549.	21.0	188
13	Advances in Nanomaterial-Mediated Photothermal Cancer Therapies: Toward Clinical Applications. Biomedicines, 2021, 9, 305.	3.2	181
14	Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials, 2013, 34, 1772-1780.	11.4	147
15	Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials, 2012, 33, 6186-6193.	11.4	139
16	Dextran sulfate nanoparticles as a theranostic nanomedicine for rheumatoid arthritis. Biomaterials, 2017, 131, 15-26.	11.4	128
17	Hyaluronic acid nanoparticles for active targeting atherosclerosis. Biomaterials, 2015, 53, 341-348.	11.4	116
18	Bioreducible Shell-Cross-Linked Hyaluronic Acid Nanoparticles for Tumor-Targeted Drug Delivery. Biomacromolecules, 2015, 16, 447-456.	5.4	114

KI YOUNG CHOI

#	Article	IF	CITATIONS
19	Bioreducible core-crosslinked hyaluronic acid micelle for targeted cancer therapy. Journal of Controlled Release, 2015, 200, 158-166.	9.9	101
20	Manipulating the Power of an Additional Phase: A Flower-like Auâ^'Fe ₃ O ₄ Optical Nanosensor for Imaging Protease Expressions <i>In vivo</i> . ACS Nano, 2011, 5, 3043-3051.	14.6	98
21	Gold-Nanoclustered Hyaluronan Nano-Assemblies for Photothermally Maneuvered Photodynamic Tumor Ablation. ACS Nano, 2016, 10, 10858-10868.	14.6	96
22	Photo-crosslinked hyaluronic acid nanoparticles with improved stability for inÂvivo tumor-targeted drug delivery. Biomaterials, 2013, 34, 5273-5280.	11.4	95
23	Versatile RNA Interference Nanoplatform for Systemic Delivery of RNAs. ACS Nano, 2014, 8, 4559-4570.	14.6	93
24	Bioreducible Carboxymethyl Dextran Nanoparticles for Tumorâ€Targeted Drug Delivery. Advanced Healthcare Materials, 2014, 3, 1829-1838.	7.6	91
25	Sticky Nanoparticles: A Platform for siRNA Delivery by a Bis(zinc(II) dipicolylamine)â€Functionalized, Selfâ€Assembled Nanoconjugate. Angewandte Chemie - International Edition, 2012, 51, 445-449.	13.8	90
26	Design Considerations of Iron-Based Nanoclusters for Noninvasive Tracking of Mesenchymal Stem Cell Homing. ACS Nano, 2014, 8, 4403-4414.	14.6	89
27	Hydrotropic hyaluronic acid conjugates: Synthesis, characterization, and implications as a carrier of paclitaxel. International Journal of Pharmaceutics, 2010, 394, 154-161.	5.2	88
28	Binary Targeting of siRNA to Hematologic Cancer Cells In Vivo Using Layerâ€by‣ayer Nanoparticles. Advanced Functional Materials, 2019, 29, 1900018.	14.9	86
29	A Facile, One-Step Nanocarbon Functionalization for Biomedical Applications. Nano Letters, 2012, 12, 3613-3620.	9.1	82
30	Inhibition of Notch signalling ameliorates experimental inflammatory arthritis. Annals of the Rheumatic Diseases, 2015, 74, 267-274.	0.9	73
31	Intracellularly Activatable Nanovasodilators To Enhance Passive Cancer Targeting Regime. Nano Letters, 2018, 18, 2637-2644.	9.1	71
32	The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials, 2014, 35, 856-865.	11.4	67
33	Highly Scalable, Closed‣oop Synthesis of Drug‣oaded, Layerâ€by‣ayer Nanoparticles. Advanced Functional Materials, 2016, 26, 991-1003.	14.9	67
34	Multiplex Imaging of an Intracellular Proteolytic Cascade by using a Broad‧pectrum Nanoquencher. Angewandte Chemie - International Edition, 2012, 51, 1625-1630.	13.8	60
35	Self-assembled dextran sulphate nanoparticles for targeting rheumatoid arthritis. Chemical Communications, 2013, 49, 10349-10351.	4.1	57
36	lonic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials, 2010, 31, 9057-9064.	11.4	55

КІ ҮОИNG СНОІ

#	Article	IF	CITATIONS
37	Tumor-Targeted Synergistic Blockade of MAPK and PI3K from a Layer-by-Layer Nanoparticle. Clinical Cancer Research, 2015, 21, 4410-4419.	7.0	55
38	Real Time, High Resolution Video Imaging of Apoptosis in Single Cells with a Polymeric Nanoprobe. Bioconjugate Chemistry, 2011, 22, 125-131.	3.6	51
39	A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nature Protocols, 2014, 9, 1900-1915.	12.0	44
40	Site-Specific PEGylated Exendin-4 Modified with a High Molecular Weight Trimeric PEG Reduces Steric Hindrance and Increases Type 2 Antidiabetic Therapeutic Effects. Bioconjugate Chemistry, 2012, 23, 2214-2220.	3.6	42
41	Facilitated intracellular delivery of peptide-guided nanoparticles in tumor tissues. Journal of Controlled Release, 2012, 157, 493-499.	9.9	41
42	Preparation and characterization of hyaluronic acid-based hydrogel nanoparticles. Journal of Physics and Chemistry of Solids, 2008, 69, 1591-1595.	4.0	35
43	Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. Journal of Controlled Release, 2020, 320, 328-336.	9.9	34
44	Amphiphilic hyaluronic acid-based nanoparticles for tumor-specific optical/MR dual imaging. Journal of Materials Chemistry, 2012, 22, 10444.	6.7	28
45	Real-time monitoring of caspase cascade activation in living cells. Journal of Controlled Release, 2012, 163, 55-62.	9.9	22
46	Size-controlled synthesis of polymerized DNA nanoparticles for targeted anticancer drug delivery. Chemical Communications, 2019, 55, 4905-4908.	4.1	21
47	Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioactive Materials, 2022, 14, 182-205.	15.6	19
48	Dual-targeting RNA nanoparticles for efficient delivery of polymeric siRNA to cancer cells. Chemical Communications, 2020, 56, 6624-6627.	4.1	17
49	Control of a toxic cyanobacterial bloom species, Microcystis aeruginosa, using the peptide HPA3NT3-A2. Environmental Science and Pollution Research, 2019, 26, 32255-32265.	5.3	7
50	Surface-Functionalized Polymeric siRNA Nanoparticles for Tunable Targeting and Intracellular Delivery to Hematologic Cancer Cells. Biomacromolecules, 2022, 23, 2255-2263.	5.4	6
51	Schisandrin C improves leaky gut conditions in intestinal cell monolayer, organoid, and nematode models by increasing tight junction protein expression. Phytomedicine, 2022, 103, 154209.	5.3	6
52	Discovery and Photoisomerization of New Pyrrolosesquiterpenoids Glaciapyrroles D and E, from Deep-Sea Sediment Streptomyces sp Marine Drugs, 2022, 20, 281.	4.6	5
53	Bibliometric Analysis of Theranostics: Two Years in the Making. Theranostics, 2013, 3, 527-531.	10.0	4
54	Back Cover: Sticky Nanoparticles: A Platform for siRNA Delivery by a Bis(zinc(II)) Tj ETQq0 0 0 rgBT /Overlock 10 T	f 50 67 To 13.8	l (dipicolylan 1

Angewandte Chemie - International Edition, 2012, 51, 558-558.

#	Article	IF	CITATIONS
55	Rücktitelbild: Sticky Nanoparticles: A Platform for siRNA Delivery by a Bis(zinc(II)) Tj ETQq1 1 0.784314 rgBT /C		0 Tf 50 74 <mark>7 T</mark> 0
	Chemie, 2012, 124, 576-576.		
56	Nanostructures: Highly Scalable, Closed-Loop Synthesis of Drug-Loaded, Layer-by-Layer Nanoparticles (Adv. Funct. Mater. 7/2016). Advanced Functional Materials, 2016, 26, 990-990.	14.9	0
57	2D to 3D transformation of gold nanosheets on human adipose-derived α-elastin nanotemplates. Journal of Industrial and Engineering Chemistry, 2021, 95, 66-72.	5.8	0