ChristÃ"le Combes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4410/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Poly(<scp>d,l</scp> -lactide)-Grafted Bioactive Glass Nanoparticles: From Nanobricks to Freeze-Cast Scaffolds for Bone Substitution. ACS Applied Nano Materials, 2022, 5, 5278-5291.	2.4	5
2	Injectable bone cement containing carboxymethyl cellulose microparticles as a silver delivery system able to reduce implant-associated infection risk. Acta Biomaterialia, 2022, 145, 342-357.	4.1	11
3	Tunable Behavior in Solution of Amorphous Calcium Ortho/Pyrophosphate Materials: An Acellular <i>In Vitro</i> Study. ACS Biomaterials Science and Engineering, 2022, , .	2.6	3
4	Multifunctional homogeneous calcium phosphate coatings: Toward antibacterial and cell adhesive titanium scaffolds. Surface and Coatings Technology, 2021, 405, 126557.	2.2	15
5	Apatitic and Tricalcic Calcium Phosphate-Based Bioceramics: Overview and Perspectives. , 2021, , 575-594.		0
6	Standardization of antimicrobial testing of dental devices. Dental Materials, 2020, 36, e59-e73.	1.6	33
7	A soft-chemistry approach to the synthesis of amorphous calcium ortho/pyrophosphate biomaterials of tunable composition. Acta Biomaterialia, 2020, 103, 333-345.	4.1	18
8	Synthesis and physical chemical characterizations of octacalcium phosphate–based biomaterials for hard-tissue regeneration. , 2020, , 177-212.		2
9	Well-defined polyester-grafted silica nanoparticles for biomedical applications: Synthesis and quantitative characterization. Polymer, 2020, 211, 123048.	1.8	10
10	Gout and pseudo-gout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin-11² activation on macrophages. Annals of the Rheumatic Diseases, 2020, 79, 1506-1514.	0.5	72
11	C-reactive protein (CRP) recognizes uric acid crystals and recruits proteases C1 and MASP1. Scientific Reports, 2020, 10, 6391.	1.6	19
12	Advances in the synthesis and structure of α-canaphite: a multitool and multiscale study. CrystEngComm, 2020, 22, 3130-3143.	1.3	8
13	Multifunctionalization Modulates Hydroxyapatite Surface Interaction with Bisphosphonate: Antiosteoporotic and Antioxidative Stress Materials. ACS Biomaterials Science and Engineering, 2019, 5, 3429-3439.	2.6	14
14	Adsorption of Proteins on m-CPPD and Urate Crystals Inhibits Crystal-induced Cell Responses: Study on Albumin-crystal Interaction. Journal of Functional Biomaterials, 2019, 10, 18.	1.8	16
15	Calcium phosphate coatings elaborated by the soaking process on titanium dental implants: Surface preparation, processing and physical–chemical characterization. Dental Materials, 2019, 35, e25-e35.	1.6	37
16	Single-step pulsed electrodeposition of calcium phosphate coatings on titanium for drug delivery. Surface and Coatings Technology, 2019, 358, 266-275.	2.2	33
17	Inflammatory Potential of Four Different Phases of Calcium Pyrophosphate Relies on NF-ήB Activation and MAPK Pathways. Frontiers in Immunology, 2018, 9, 2248.	2.2	41
18	Pushing the limits of sensitivity and resolution for natural abundance ⁴³ Ca NMR using ultra-high magnetic field (35.2 T). Chemical Communications, 2018, 54, 9591-9594.	2.2	22

Christèle Combes

#	Article	IF	CITATIONS
19	Time-domain THz spectroscopy of the characteristics of hydroxyapatite provides a signature of heating in bone tissue. PLoS ONE, 2018, 13, e0201745.	1.1	3
20	Multi-energy spectral photon-counting CT in crystal-related arthropathies: initial experience and diagnostic performance in vitro. , 2018, , .		0
21	Freeze-casting for PLGA/carbonated apatite composite scaffolds: Structure and properties. Materials Science and Engineering C, 2017, 77, 731-738.	3.8	34
22	PNIPAM grafted surfaces through ATRP and RAFT polymerization: Chemistry and bioadhesion. Colloids and Surfaces B: Biointerfaces, 2017, 151, 143-155.	2.5	57
23	Influence of Ionic Additives on Triclinic Calcium Pyrophosphate Dihydrate Precipitation. Crystal Growth and Design, 2017, 17, 37-50.	1.4	10
24	Hydroxyapatite functionalization to trigger adsorption and release of risedronate. Colloids and Surfaces B: Biointerfaces, 2017, 160, 493-499.	2.5	21
25	Crystal growth of aragonite in the presence of phosphate. Journal of Crystal Growth, 2017, 458, 44-52.	0.7	32
26	Apatite Biominerals. Minerals (Basel, Switzerland), 2016, 6, 34.	0.8	152
27	Development of a new family of monolithic calcium (pyro)phosphate glasses by soft chemistry. Acta Biomaterialia, 2016, 41, 320-327.	4.1	13
28	Nanocrystalline Apatites: A Versatile Functionalizable Platform for Biomedical Applications for Bone Engineering… and beyond. Key Engineering Materials, 2016, 696, 14-22.	0.4	4
29	Effect of ionic liquids on the structural, thermal, and <i>in vitro</i> degradation properties of poly(ε aprolactone) synthesized in the presence of <i>Candida antarctica</i> lipase B. Journal of Applied Polymer Science, 2016, 133, .	1.3	10
30	Injectability, microstructure and release properties of sodium fusidate-loaded apatitic cement as a local drug-delivery system. Materials Science and Engineering C, 2016, 59, 177-184.	3.8	27
31	Crystal structure of monoclinic calcium pyrophosphate dihydrate (m-CPPD) involved in inflammatory reactions and osteoarthritis. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2016, 72, 96-101.	0.5	19
32	Mechanical properties of self-setting composites: influence of the carboxymethylcellulose content and hydration state. Journal of Materials Science, 2016, 51, 4296-4305.	1.7	13
33	From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective. Acta Biomaterialia, 2016, 31, 348-357.	4.1	33
34	Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Annals of the Rheumatic Diseases, 2016, 75, 1372-1379.	0.5	93
35	Comparison of Physical-chemical and Mechanical Properties of Chlorapatite and Hydroxyapatite Plasma Sprayed Coatings. Open Biomedical Engineering Journal, 2015, 9, 42-55.	0.7	15
36	Structure of the calcium pyrophosphate monohydrate phase (Ca ₂ P ₂ O ₇ A·H ₂ O): towards understanding the dehydration process in calcium pyrophosphate hydrates. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 862-866.	0.2	10

ChristÃ"le Combes

#	Article	IF	CITATIONS
37	Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials. Progress in Crystal Growth and Characterization of Materials, 2014, 60, 63-73.	1.8	80
38	What bridges mineral platelets of bone?. BoneKEy Reports, 2014, 3, 586.	2.7	9
39	Synthesis of fluor-hydroxyapatite powder for plasma sprayed biomedical coatings: Characterization and improvement of the powder properties. Powder Technology, 2014, 255, 23-28.	2.1	16
40	Characterization of Calcium Phosphates Using Vibrational Spectroscopies. Springer Series in Biomaterials Science and Engineering, 2014, , 229-266.	0.7	37
41	Optimization of spray-dried hyaluronic acid microspheres to formulate drug-loaded bone substitute materials. Powder Technology, 2014, 255, 44-51.	2.1	15
42	Composition and properties of silver-containing calcium carbonate–calcium phosphate bone cement. Journal of Materials Science: Materials in Medicine, 2013, 24, 2665-2675.	1.7	20
43	Synthesis and Characterisation of Hydrated Calcium Pyrophosphate Phases of Biological Interest. European Journal of Inorganic Chemistry, 2013, 2013, 5886-5895.	1.0	45
44	Development of an injectable composite for bone regeneration. Irbm, 2013, 34, 176-179.	3.7	5
45	Crystallisation of a highly metastable hydrated calcium pyrophosphate phase. CrystEngComm, 2013, 15, 2294.	1.3	22
46	Characterization and Some Physicochemical Aspects of Pathological Microcalcifications. Chemical Reviews, 2012, 112, 5092-5120.	23.0	162
47	Hydroxyapatite coating on titanium by a low energy plasma spraying mini-gun. Surface and Coatings Technology, 2012, 206, 2346-2353.	2.2	60
48	Strontiumâ€loaded mineral bone cements as sustained release systems: Compositions, release properties, and effects on human osteoprogenitor cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 378-390.	1.6	35
49	The Calcium Phosphateâ^'Calcium Carbonate System: Growth of Octacalcium Phosphate on Calcium Carbonates. Crystal Growth and Design, 2011, 11, 1683-1688.	1.4	20
50	High Zn content of Randall's plaque: A μ-X-ray fluorescence investigation. Journal of Trace Elements in Medicine and Biology, 2011, 25, 160-165.	1.5	60
51	Cogrinding significance for calcium carbonate–calcium phosphate mixed cement. II. Effect on cement properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 302-312.	1.6	2
52	Co-grinding significance for calcium carbonate–calcium phosphate mixed cement. Part I: Effect of particle size and mixing on solid phase reactivity. Acta Biomaterialia, 2011, 7, 1817-1826.	4.1	16
53	Medical Potentialities of Biomimetic Apatites through Adsorption, Ionic Substitution, and Mineral/Organic Associations: Three Illustrative Examples. Advanced Engineering Materials, 2010, 12, B224.	1.6	39
54	Biomimetic apatite sintered at very low temperature by spark plasma sintering: Physico-chemistry and microstructure aspects. Acta Biomaterialia, 2010, 6, 577-585.	4.1	91

Christèle Combes

#	Article	IF	CITATIONS
55	Rheological properties of calcium carbonate self-setting injectable paste. Acta Biomaterialia, 2010, 6, 920-927.	4.1	23
56	Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomaterialia, 2010, 6, 3362-3378.	4.1	600
57	Adsorption and release of BMPâ€2 on nanocrystalline apatiteâ€coated and uncoated hydroxyapatite/βâ€tricalcium phosphate porous ceramics. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 706-715.	1.6	105
58	Bone mineral: update on chemical composition and structure. Osteoporosis International, 2009, 20, 1013-1021.	1.3	430
59	Diffraction techniques and vibrational spectroscopy opportunities to characterise bones. Osteoporosis International, 2009, 20, 1065-1075.	1.3	78
60	Nanocrystalline apatites: From powders to biomaterials. Powder Technology, 2009, 190, 118-122.	2.1	76
61	Production, by co-grinding in a media mill, of porous biodegradable polylactic acid–apatite composite materials for bone tissue engineering. Powder Technology, 2009, 190, 89-94.	2.1	19
62	Surface Characteristics of Nanocrystalline Apatites: Effect of Mg Surface Enrichment on Morphology, Surface Hydration Species, and Cationic Environments. Langmuir, 2009, 25, 5647-5654.	1.6	124
63	Impact of Calcium Phosphate Particle Morphology on Osteoconduction: an In Vivo Study. Key Engineering Materials, 2008, 361-363, 1237-1240.	0.4	2
64	Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: A preamble to the activation of bone repair materials. Materials Science and Engineering C, 2008, 28, 1544-1550.	3.8	92
65	Fluorideâ€Based Bioceramics. , 2008, , 279-331.		0
66	Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials. Materials Science and Engineering C, 2007, 27, 198-205.	3.8	252
67	Preparation, physical–chemical characterisation and cytocompatibility of calcium carbonate cements. Biomaterials, 2006, 27, 1945-1954.	5.7	92
68	Calcium carbonate–calcium phosphate mixed cement compositions for bone reconstruction. Journal of Biomedical Materials Research - Part A, 2006, 79A, 318-328.	2.1	56
69	Chemical Diversity of Apatites. Advances in Science and Technology, 2006, 49, 27.	0.2	34
70	Bioceramics: Spark Plasma Sintering (SPS) of Calcium Phosphates. Advances in Science and Technology, 2006, 49, 45.	0.2	37
71	Formation and Evolution of Hydrated Surface Layers of Apatites. Key Engineering Materials, 2005, 284-286, 3-6.	0.4	45
72	New Calcium Carbonate-Based Cements for Bone Reconstruction. Key Engineering Materials, 2005, 284-286, 105-108.	0.4	9

ChristÃ"le Combes

#	Article	IF	CITATIONS
73	Specific Characteristics of Wet Nanocrystalline Apatites. Consequences on Biomaterials and Bone Tissue. Key Engineering Materials, 2004, 254-256, 927-930.	0.4	32
74	Poorly crystalline apatites: evolution and maturation in vitro and in vivo. Journal of Bone and Mineral Metabolism, 2004, 22, 310-7.	1.3	124
75	Adaptative physico-chemistry of bio-related calcium phosphates. Journal of Materials Chemistry, 2004, 14, 2148.	6.7	176
76	Minéralisations biologiques à base de phosphate de calcium. Comptes Rendus - Palevol, 2004, 3, 563-572.	0.1	40
77	Adsorption of proteins and calcium phosphate materials bioactivity. Biomaterials, 2002, 23, 2817-2823.	5.7	182
78	Crystal growth and structure of a new hormonal derived compound. International Journal of Pharmaceutics, 2002, 248, 141-147.	2.6	2
79	Identification and Evaluation of HPO ₄ Ions in Biomimetic Poorly Crystalline Apatite and Bone Mineral. Key Engineering Materials, 2000, 192-195, 143-146.	0.4	15
80	Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study. Bone, 2000, 26, 599-602.	1.4	115
81	Heterogeneous crystallization of dicalcium phosphate dihydrate on titanium surfaces. Journal of Materials Science: Materials in Medicine, 1999, 10, 231-237.	1.7	9
82	In vitro crystallization of octacalcium phosphate on type I collagen: influence of serum albumin. Journal of Materials Science: Materials in Medicine, 1999, 10, 153-160.	1.7	78
83	XPS and IR study of dicalcium phosphate dihydrate nucleation on titanium surfaces. Colloids and Surfaces B: Biointerfaces, 1998, 11, 15-27.	2.5	41
84	Nucleation and crystal growth of dicalcium phosphate dihydrate on titanium powder. Journal of Materials Science: Materials in Medicine, 1995, 6, 699-702.	1.7	12
85	Formation and Evolution of Hydrated Surface Layers of Apatites. Key Engineering Materials, 0, , 3-6.	0.4	1