Jin-Ho Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4409810/publications.pdf

Version: 2024-02-01

117453 155451 3,636 96 34 55 citations h-index g-index papers 98 98 98 3474 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-edited Saccharomyces cerevisiae strains for improving quality, safety, and flavor of fermented foods. Food Microbiology, 2022, 104, 103971.	2.1	9
2	A Species-Specific qPCR Method for Enumeration of Lactobacillus sanfranciscensis, Lactobacillus brevis, and Lactobacillus curvatus During Cocultivation in Sourdough. Food Analytical Methods, 2021, 14, 750-760.	1.3	7
3	Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production. Applied Microbiology and Biotechnology, 2021, 105, 5751-5767.	1.7	14
4	Selective production of retinol by engineered Saccharomyces cerevisiae through expression of retinol dehydrogenase. Biotechnology and Bioengineering, 2021, , .	1.7	9
5	Improved production of 3-hydroxypropionic acid in engineered Escherichia coli by rebalancing heterologous and endogenous synthetic pathways. Bioresource Technology, 2020, 299, 122600.	4.8	15
6	Highâ€level βâ€carotene production from xylose by engineered <i>Saccharomyces cerevisiae</i> without overexpression of a truncated <i>HMG1</i> (t <i>HMG1</i>). Biotechnology and Bioengineering, 2020, 117, 3522-3532.	1.7	30
7	Evaluation of 2,3-Butanediol Production from Red Seaweed Gelidium amansii Hydrolysates Using Engineered Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology, 2020, 30, 1912-1918.	0.9	2
8	Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Journal of Biotechnology, 2019, 304, 31-37.	1.9	20
9	Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae. Biotechnology for Biofuels, 2019, 12, 204.	6.2	54
10	Enhanced production of 2'â€fucosyllactose from fucose by elimination of rhamnose isomerase and arabinose isomerase in engineered <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2019, 116, 2412-2417.	1.7	39
11	Edgeworthia papyrifera Regulates Osteoblast and Osteoclast Differentiation In Vitro and Exhibits Anti-osteoporosis Activity in Animal Models of Osteoporosis. Planta Medica, 2019, 85, 766-773.	0.7	2
12	Overexpression of Endogenous Xylose Reductase Enhanced Xylitol Productivity at 40°C by Thermotolerant Yeast Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 2019, 189, 459-470.	1.4	7
13	Enhanced production of 3-hydroxypropionic acid from glucose and xylose by alleviation of metabolic congestion due to glycerol flux in engineered Escherichia coli. Bioresource Technology, 2019, 285, 121320.	4.8	19
14	Production of 3â€Fucosyllactose in Engineered <i>Escherichia coli</i> with αâ€1,3â€Fucosyltransferase from <i>Helicobacter pylori</i> . Biotechnology Journal, 2019, 14, e1800498.	1.8	23
15	<scp>L</scp> â€Fucose production by engineered <i>Escherichia coli</i> Bioengineering, 2019, 116, 904-911.	1.7	13
16	Production of biofuels and chemicals from xylose using native and engineered yeast strains. Biotechnology Advances, 2019, 37, 271-283.	6.0	98
17	Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a Probiotic Starter for Sourdough Fermentation. Journal of Microbiology and Biotechnology, 2019, 29, 1729-1738.	0.9	17
18	Isolation of lactic acid bacteria starters from Jeung-pyun for sourdough fermentation. Food Science and Biotechnology, 2018, 27, 73-78.	1.2	17

#	Article	IF	CITATIONS
19	Elimination of biosynthetic pathways for l-valine and l-isoleucine in mitochondria enhances isobutanol production in engineered Saccharomyces cerevisiae. Bioresource Technology, 2018, 268, 271-277.	4.8	14
20	Engineering of \hat{l}_{\pm} -1,3-fucosyltransferases for production of 3-fucosyllactose in Escherichia coli. Metabolic Engineering, 2018, 48, 269-278.	3.6	37
21	Anti-melanogenic activity of schaftoside in Rhizoma Arisaematis by increasing autophagy in B16F1 cells. Biochemical and Biophysical Research Communications, 2018, 503, 309-315.	1.0	26
22	Enhanced ethanol fermentation by engineered Saccharomyces cerevisiae strains with high spermidine contents. Bioprocess and Biosystems Engineering, 2017, 40, 683-691.	1.7	13
23	Intracellular metabolite profiling of <i>Saccharomyces cerevisiae</i> evolved under furfural. Microbial Biotechnology, 2017, 10, 395-404.	2.0	25
24	High production of 2,3-butanediol from glycerol without 1,3-propanediol formation by Raoultella ornithinolytica B6. Applied Microbiology and Biotechnology, 2017, 101, 2821-2830.	1.7	26
25	Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production. Applied Microbiology and Biotechnology, 2017, 101, 2241-2250.	1.7	47
26	Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis. Bioresource Technology, 2017, 241, 88-94.	4.8	22
27	Metabolic engineering of Saccharomyces cerevisiae for production of spermidine under optimal culture conditions. Enzyme and Microbial Technology, 2017, 101, 30-35.	1.6	19
28	Improved production of 2′-fucosyllactose in engineered Escherichia coli by expressing putative α-1,2-fucosyltransferase, WcfB from Bacteroides fragilis. Journal of Biotechnology, 2017, 257, 192-198.	1.9	47
29	Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresource Technology, 2017, 228, 355-361.	4.8	62
30	One-pot synthesis of GDP-1-fucose by a four-enzyme cascade expressed in Lactococcus lactis. Journal of Biotechnology, 2017, 264, 1-7.	1.9	9
31	Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. Bioresource Technology, 2017, 245, 1551-1557.	4.8	46
32	The first bacterial \hat{l}^2 -1,6-endoglucanase from Saccharophagus degradans 2-40T for the hydrolysis of pustulan and laminarin. Applied Microbiology and Biotechnology, 2017, 101, 197-204.	1.7	15
33	Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l -lactic acid production. Journal of Biotechnology, 2017, 241, 81-86.	1.9	25
34	Elucidation of ethanol tolerance mechanisms in <i>Saccharomyces cerevisiae</i> by global metabolite profiling. Biotechnology Journal, 2016, 11, 1221-1229.	1.8	26
35	Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechnology for Biofuels, 2016, 9, 265.	6.2	48
36	Affinity improvement by fine tuning of single-chain variable fragment against aflatoxin B1. Food Chemistry, 2016, 209, 312-317.	4.2	7

#	Article	IF	CITATIONS
37	Enhanced production of 2,3â€butanediol in pyruvate decarboxylaseâ€deficient <i>Saccharomyces cerevisiae</i> through optimizing ratio of glucose/galactose. Biotechnology Journal, 2016, 11, 1424-1432.	1.8	18
38	Metabolic engineering of <i>Escherichia coli</i> to produce 2′â€fucosyllactose via <i>salvage</i> pathway of guanosine 5′â€diphosphate (GDP)â€ <scp>l</scp> â€fucose. Biotechnology and Bioengineering, 2016, 113, 2443-2452.	1.7	73
39	Editorial overview: Food biotechnology: Critical gap filler in the nexus of food, energy, and waste for a prosperous future. Current Opinion in Biotechnology, 2016, 37, iv-vii.	3.3	1
40	Molecular cloning and expression of Enterobacter aerogenes $\hat{l}\pm$ -acetolactate decarboxylase in pyruvate decarboxylase-deficient Saccharomyces cerevisiae for efficient 2,3-butanediol production. Process Biochemistry, 2016, 51, 170-176.	1.8	17
41	Recent advances in biological production of sugar alcohols. Current Opinion in Biotechnology, 2016, 37, 105-113.	3.3	109
42	High Production of 2,3-Butanediol (2,3-BD) by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes. PLoS ONE, 2016, 11, e0165076.	1.1	9
43	Fatty acid hydration activity of a recombinant <i>Escherichia coli</i> â€based biocatalyst is improved through targeting the oleate hydratase into the periplasm. Biotechnology Journal, 2015, 10, 1887-1893.	1.8	11
44	Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered <i>Saccharomyces cerevisiae</i> . Biotechnology Journal, 2015, 10, 1935-1943.	1.8	49
45	Affinity maturation of single-chain variable fragment specific for aflatoxin B1 using yeast surface display. Food Chemistry, 2015, 188, 604-611.	4.2	23
46	Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose. Bioresource Technology, 2015, 179, 467-472.	4.8	75
47	Development of species-specific PCR primers and polyphasic characterization of Lactobacillus sanfranciscensis isolated from Korean sourdough. International Journal of Food Microbiology, 2015, 200, 80-86.	2.1	20
48	Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metabolic Engineering, 2015, 29, 46-55.	3.6	77
49	Application of repeated aspartate tags to improving extracellular production of Escherichia coli l-asparaginase isozyme II. Enzyme and Microbial Technology, 2015, 79-80, 49-54.	1.6	22
50	Enhanced production of 2′-fucosyllactose in engineered Escherichia coli BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase. Journal of Biotechnology, 2015, 210, 107-115.	1.9	87
51	Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresource Technology, 2015, 191, 512-519.	4.8	52
52	Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol. Bioresource Technology, 2015, 191, 445-451.	4.8	29
53	BIX-01294-induced autophagy regulates elongation of primary cilia. Biochemical and Biophysical Research Communications, 2015, 460, 428-433.	1.0	14
54	Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields. Bioresource Technology, 2015, 198, 861-866.	4.8	23

#	Article	IF	CITATIONS
55	Simultaneous conversion of glucose and xylose to 3-hydroxypropionic acid in engineered Escherichia coli by modulation of sugar transport and glycerol synthesis. Bioresource Technology, 2015, 198, 709-716.	4.8	42
56	Molecular cloning and expression of fungal cellobiose transporters and \hat{l}^2 -glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. Journal of Biotechnology, 2014, 169, 34-41.	1.9	28
57	Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresource Technology, 2014, 156, 170-175.	4.8	80
58	2,3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2014, 98, 5757-5764.	1.7	38
59	Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Journal of Biotechnology, 2014, 192, 376-382.	1.9	67
60	A biosynthetic pathway for hexanoic acid production in Kluyveromyces marxianus. Journal of Biotechnology, 2014, 182-183, 30-36.	1.9	56
61	One-pot pretreatment, saccharification and ethanol fermentation of lignocellulose based on acid–base mixture pretreatment. RSC Advances, 2014, 4, 55318-55327.	1.7	26
62	Simultaneous integration of multiple genes into the Kluyveromyces marxianus chromosome. Journal of Biotechnology, 2013, 167, 323-325.	1.9	17
63	Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 2013, 97, 2029-2041.	1.7	45
64	Production of 2,3-butanediol by engineered Saccharomyces cerevisiae. Bioresource Technology, 2013, 146, 274-281.	4.8	103
65	Biotechnology for a healthy and green world. Journal of Biotechnology, 2013, 168, 119.	1.9	0
66	Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH. Bioresource Technology, 2013, 135, 432-439.	4.8	47
67	Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnology Advances, 2013, 31, 851-861.	6.0	206
68	Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess and Biosystems Engineering, 2012, 35, 1467-1475.	1.7	86
69	Whole cell biosynthesis of a functional oligosaccharide, 2′-fucosyllactose, using engineered Escherichia coli. Microbial Cell Factories, 2012, 11, 48.	1.9	99
70	Effects of overexpression of acetaldehyde dehydrogenase 6 and acetyl-CoA synthetase 1 on xylitol production in recombinant Saccharomyces cerevisiae. Biocatalysis and Agricultural Biotechnology, 2012, 1, 15-19.	1.5	25
71	Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae. Bioprocess and Biosystems Engineering, 2012, 35, 49-54.	1.7	16
72	Engineered <i>Saccharomyces cerevisiae</i> capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 504-509.	3.3	445

#	Article	IF	CITATIONS
73	Enhanced production of GDP-I-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2011, 91, 967-976.	1.7	51
74	Characterisation of monoclonal antibody against aflatoxin B1 produced in hybridoma 2C12 and its single-chain variable fragment expressed in recombinant Escherichia coli. Food Chemistry, 2011, 126, 1316-1323.	4.2	40
75	Molecular cloning of the genes for GDP-mannose 4, 6-dehydratase and GDP-l-fucose synthetase from Bacteroides thetaiotaomicron. Food Science and Biotechnology, 2010, 19, 849-855.	1.2	4
76	Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110. Microbial Cell Factories, 2010, 9, 43.	1.9	32
77	Lactate increases coenzyme Q10 production by Agrobacterium tumefaciens. World Journal of Microbiology and Biotechnology, 2008, 24, 887-890.	1.7	12
78	Dual modulation of glucose 6-phosphate metabolism to increase NADPH-dependent xylitol production in recombinant Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 37-42.	1.8	32
79	Effects of temperature shift strategies on human preproinsulin production in the fed-batch fermentation of recombinantEscherichia coli. Biotechnology and Bioprocess Engineering, 2007, 12, 556-561.	1.4	18
80	Elevation of glucose 6-phosphate dehydrogenase activity increases xylitol production in recombinant Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic, 2006, 43, 86-89.	1.8	53
81	Expression and purification of ubiquitin-specific protease (UBP1) of Saccharomyces cerevisiae in recombinant Escherichia coli. Biotechnology and Bioprocess Engineering, 2005, 10, 599-602.	1.4	14
82	Selection of optimum expression system for production of kringle fragment of human apolipoprotein(a) inSaccharomyces cerevisiae. Biotechnology and Bioprocess Engineering, 2004, 9, 523-527.	1.4	7
83	Scale-up of erythritol production by an osmophilic mutant of Candida magnoliae. Biotechnology Letters, 2003, 25, 2103-2105.	1.1	64
84	Expression of Azotobacter vinelandii soluble transhydrogenase perturbs xylose reductase-mediated conversion of xylose to xylitol by recombinant Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic, 2003, 26, 251-256.	1.8	16
85	Flow cytometric analysis of human lysozyme production in recombinantSaccharomyces cerevisiae. Biotechnology and Bioprocess Engineering, 2002, 7, 52-55.	1.4	2
86	Expression of Bacillus macerans cyclodextrin glucanotransferase gene in Saccharomyces cerevisiae. Biotechnology Letters, 2001, 23, 727-730.	1.1	12
87	Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene. Process Biochemistry, 2000, 35, 1199-1203.	1.8	56
88	Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnology Letters, 2000, 22, 1625-1628.	1.1	35
89	A parametric study on ethanol production from xylose byPichia stipitis. Biotechnology and Bioprocess Engineering, 2000, 5, 27-31.	1.4	23
90	Production of erythritol from glucose by an osmophilic mutant of Candida magnoliae. Biotechnology Letters, 1999, 21, 887-890.	1.1	29

#	Article	IF	CITATION
91	Microencapsulation of recombinantSaccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules., 1996, 51, 157-162.		60
92	Effects of medium composition on hirudin production in recombinant Saccharomyces cerevisiae. Biotechnology Letters, 1996, 18, 1129-1132.	1.1	8
93	Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules., 1996, 51, 157.		2
94	Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Applied Biochemistry and Biotechnology, 1996, 131, 870-879.	1.4	2
95	Effects of temperature and cycloheximide on secretion of cloned invertase from recombinant Saccharomyces cerevisiae. Biotechnology and Bioengineering, 1995, 46, 627-630.	1.7	6
96	Production of hirudin by recombinant Saccharomyces cerevisiae in a membrane-recycle fermentor. Biotechnology Letters, 1995, 17, 1031-1036.	1.1	12