
Daniel C Walker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4409667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of an archetypal protein transport system in bacterial outer membranes. Nature Structural and Molecular Biology, 2012, 19, 506-510.	3.6	192
2	Immunity proteins: enzyme inhibitors that avoid the active site. Trends in Biochemical Sciences, 2001, 26, 624-631.	3.7	100
3	Mechanism and cleavage specificity of the H-N-H endonuclease colicin E9 1 1Edited by J. Karn. Journal of Molecular Biology, 2001, 314, 735-749.	2.0	96
4	The therapeutic potential of bacteriocins as protein antibiotics. Emerging Topics in Life Sciences, 2017, 1, 65-74.	1.1	80
5	Exploitation of an iron transporter for bacterial protein antibiotic import. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12051-12056.	3.3	76
6	Ferredoxin Containing Bacteriocins Suggest a Novel Mechanism of Iron Uptake in Pectobacterium spp. PLoS ONE, 2012, 7, e33033.	1.1	75
7	Competitive recruitment of the periplasmic translocation portal TolB by a natively disordered domain of colicin E9. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12353-12358.	3.3	68
8	The Role of Electrostatics in Colicin Nuclease Domain Translocation into Bacterial Cells. Journal of Biological Chemistry, 2007, 282, 31389-31397.	1.6	59
9	PrrC fromRhodobacter sphaeroides, a homologue of eukaryotic Sco proteins, is a copper-binding protein and may have a thiol-disulfide oxidoreductase activity. FEBS Letters, 2002, 518, 10-16.	1.3	57
10	Lectin-Like Bacteriocins from Pseudomonas spp. Utilise D-Rhamnose Containing Lipopolysaccharide as a Cellular Receptor. PLoS Pathogens, 2014, 10, e1003898.	2.1	56
11	A Highly Conserved Bacterial D-Serine Uptake System Links Host Metabolism and Virulence. PLoS Pathogens, 2016, 12, e1005359.	2.1	55
12	Efficacy of species-specific protein antibiotics in a murine model of acute Pseudomonas aeruginosa lung infection. Scientific Reports, 2016, 6, 30201.	1.6	52
13	Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication. Science Advances, 2020, 6, eaax6328.	4.7	45
14	Thermodynamic Consequences of Bipartite Immunity Protein Binding to the Ribosomal Ribonuclease Colicin E3â€. Biochemistry, 2003, 42, 4161-4171.	1.2	44
15	Discovery, characterization and <i>inÂvivo</i> activity of pyocin SD2, a protein antibiotic from <i>Pseudomonas aeruginosa</i> . Biochemical Journal, 2016, 473, 2345-2358.	1.7	42
16	Pyocin S5 Import into Pseudomonas aeruginosa Reveals a Generic Mode of Bacteriocin Transport. MBio, 2020, 11, .	1.8	42
17	Propionic Acid Promotes the Virulent Phenotype of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Cell Reports, 2020, 30, 2297-2305.e5.	2.9	42
18	Activity of Pyocin S2 against Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2012, 56, 1599-1601.	1.4	41

DANIEL C WALKER

#	Article	IF	CITATIONS
19	Transcriptional Profiling of Colicin-Induced Cell Death of Escherichia coli MG1655 Identifies Potential Mechanisms by Which Bacteriocins Promote Bacterial Diversity. Journal of Bacteriology, 2004, 186, 866-869.	1.0	40
20	The Potassium Binding Protein Kbp Is a Cytoplasmic Potassium Sensor. Structure, 2016, 24, 741-749.	1.6	38
21	Identification of the catalytic motif of the microbial ribosome inactivating cytotoxin colicin E3. Protein Science, 2004, 13, 1603-1611.	3.1	37
22	Bacteriocins active against plant pathogenic bacteria. Biochemical Society Transactions, 2012, 40, 1498-1502.	1.6	34
23	Colicin-like bacteriocins as novel therapeutic agents for the treatment of chronic biofilm-mediated infection. Biochemical Society Transactions, 2012, 40, 1549-1552.	1.6	34
24	The Structure of a Conserved Domain of TamB Reveals a Hydrophobic Î ² Taco Fold. Structure, 2017, 25, 1898-1906.e5.	1.6	33
25	Engineering bacteriocinâ€mediated resistance against the plant pathogen <i>Pseudomonas syringae</i> . Plant Biotechnology Journal, 2020, 18, 1296-1306.	4.1	32
26	The Crystal Structure of the Lipid II-degrading Bacteriocin Syringacin M Suggests Unexpected Evolutionary Relationships between Colicin M-like Bacteriocins. Journal of Biological Chemistry, 2012, 287, 38876-38888.	1.6	31
27	Bacterial iron acquisition mediated by outer membrane translocation and cleavage of a host protein. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6840-6845.	3.3	29
28	Structure of the bacterial plant-ferredoxin receptor FusA. Nature Communications, 2016, 7, 13308.	5.8	26
29	Structures of the Ultra-High-Affinity Protein–Protein Complexes of Pyocins S2 and AP41 and Their Cognate Immunity Proteins from Pseudomonas aeruginosa. Journal of Molecular Biology, 2015, 427, 2852-2866.	2.0	25
30	Activity of Species-specific Antibiotics Against Crohn's Disease–Associated Adherent-invasive Escherichia coli. Inflammatory Bowel Diseases, 2015, 21, 1.	0.9	24
31	Structure of the atypical bacteriocin pectocin <scp>M</scp> 2 implies a novel mechanism of protein uptake. Molecular Microbiology, 2014, 93, 234-246.	1.2	23
32	Consequences of Inducing Intrinsic Disorder in a High-Affinity Protein–Protein Interaction. Journal of the American Chemical Society, 2015, 137, 5252-5255.	6.6	23
33	Bacteriocins Targeting Gram-Negative Phytopathogenic Bacteria: Plantibiotics of the Future. Frontiers in Microbiology, 2020, 11, 575981.	1.5	20
34	Beware of proteins bearing gifts: protein antibiotics that use iron as a Trojan horse. FEMS Microbiology Letters, 2013, 338, 1-9.	0.7	19
35	Pyocin efficacy in a murine model of <i>Pseudomonas aeruginosa</i> sepsis. Journal of Antimicrobial Chemotherapy, 2021, 76, 2317-2324.	1.3	19
36	<i>Galleria mellonella</i> as an infection model for the multi-host pathogen <i>Streptococcus agalactiae</i> reflects hypervirulence of strains associated with human invasive disease. Virulence, 2019, 10, 600-609.	1.8	18

DANIEL C WALKER

#	Article	IF	CITATIONS
37	Targeted Killing of Pseudomonas aeruginosa by Pyocin G Occurs via the Hemin Transporter Hur. Journal of Molecular Biology, 2020, 432, 3869-3880.	2.0	17
38	Genomic and transcriptomic characterization of Pseudomonas aeruginosa small colony variants derived from a chronic infection model. Microbial Genomics, 2019, 5, .	1.0	16
39	Protease-associated import systems are widespread in Gram-negative bacteria. PLoS Genetics, 2019, 15, e1008435.	1.5	15
40	Structural and biophysical analysis of nuclease protein antibiotics. Biochemical Journal, 2016, 473, 2799-2812.	1.7	12
41	Structure of protease-cleaved <i>Escherichia coli</i> α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1478-1486.	2.5	11
42	Recombinant expression, purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal DUF490963–1138domain of TamB fromEscherichia coli. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1272-1275.	0.4	4
43	Screening of the Enterocin-Encoding Genes and Their Genetic Determinism in the Bacteriocinogenic Enterococcus faecium GHB21. Probiotics and Antimicrobial Proteins, 2019, 11, 325-331.	1.9	4
44	FusB Energizes Import across the Outer Membrane through Direct Interaction with Its Ferredoxin Substrate. MBio, 2020, 11, .	1.8	4
45	Challenges of using protein antibiotics for pathogen control. Pest Management Science, 2021, 77, 3836-3840.	1.7	4
46	Targeted Delivery of Narrow-Spectrum Protein Antibiotics to the Lower Gastrointestinal Tract in a Murine Model of Escherichia coli Colonization. Frontiers in Microbiology, 2021, 12, 670535.	1.5	4
47	Draft Genome Sequence of the Necrotrophic Plant-Pathogenic Bacterium Pectobacterium carotovorum subsp. carotovorum Strain LMG 2410. Microbiology Resource Announcements, 2019, 8, .	0.3	2
48	Protease-associated import systems are widespread in Gram-negative bacteria. , 2019, 15, e1008435.		0
49	Protease-associated import systems are widespread in Gram-negative bacteria. , 2019, 15, e1008435.		0
50	Protease-associated import systems are widespread in Gram-negative bacteria. , 2019, 15, e1008435.		0
51	Protease-associated import systems are widespread in Gram-negative bacteria. , 2019, 15, e1008435.		0