
Armando Alexei RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/440949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased Activities against Biofilms of the Pathogenic Yeast Candida albicans of Optimized Pom-1 Derivatives. Pharmaceutics, 2022, 14, 318.	4.5	5
2	Combination of Six Individual Derivatives of the Pom-1 Antibiofilm Peptide Doubles Their Efficacy against Invasive and Multi-Resistant Clinical Isolates of the Pathogenic Yeast CandidaÂalbicans. Pharmaceutics, 2022, 14, 1332.	4.5	2
3	Natural cystatin C fragments inhibit GPR15-mediated HIV and SIV infection without interfering with GPR15L signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
4	Antimicrobial Peptides Pom-1 and Pom-2 from Pomacea poeyana Are Active against Candidaauris, C. parapsilosis and C. albicans Biofilms. Pathogens, 2021, 10, 496.	2.8	13
5	Antimicrobial Activity of Cyclic-Monomeric and Dimeric Derivatives of the Snail-Derived Peptide Cm-p5 against Viral and Multidrug-Resistant Bacterial Strains. Biomolecules, 2021, 11, 745.	4.0	6
6	Delivery by Dendritic Mesoporous Silica Nanoparticles Enhances the Antimicrobial Activity of a Napsinâ€Đerived Peptide Against Intracellular <i>Mycobacterium tuberculosis</i> . Advanced Healthcare Materials, 2021, 10, e2100453.	7.6	13
7	IFITM proteins promote SARS-CoV-2 infection and are targets for virus inhibition in vitro. Nature Communications, 2021, 12, 4584.	12.8	129
8	Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines, 2021, 9, 1381.	3.2	24
9	Respiratory ß-2-Microglobulin exerts pH dependent antimicrobial activity. Virulence, 2020, 11, 1402-1414.	4.4	9
10	New Antibacterial Peptides from the Freshwater Mollusk Pomacea poeyana (Pilsbry, 1927). Biomolecules, 2020, 10, 1473.	4.0	15
11	A Placenta Derived C-Terminal Fragment of β-Hemoglobin With Combined Antibacterial and Antiviral Activity. Frontiers in Microbiology, 2020, 11, 508.	3.5	23
12	Unbiased Identification of Angiogenin as an Endogenous Antimicrobial Protein With Activity Against Virulent Mycobacterium tuberculosis. Frontiers in Microbiology, 2020, 11, 618278.	3.5	10
13	Lectin-Functionalized Composite Hydrogels for "Capture-and-Killing―of Carbapenem-Resistant <i>Pseudomonas aeruginosa</i> . Biomacromolecules, 2018, 19, 2472-2482.	5.4	17
14	Proteomic Analyses of the Unexplored Sea Anemone Bunodactis verrucosa. Marine Drugs, 2018, 16, 42.	4.6	23
15	PhcrTx2, a New Crab-Paralyzing Peptide Toxin from the Sea Anemone Phymanthus crucifer. Toxins, 2018, 10, 72.	3.4	7
16	Microcystin‣RÂDetectedÂinÂaÂLowÂMolecularÂWeight FractionÂfromÂaÂCrudeÂExtractÂofÂZoanthusÂsoo Toxins, 2017, 9, 89.	ciatus. 3.4	5
17	A novel sea anemone peptide that inhibits acid-sensing ion channels. Peptides, 2014, 53, 3-12.	2.4	54
18	Arrhythmogenic effect of a crude extract from sea anemone Condylactis gigantea: Possible involvement of rErg1 channels. Toxicon, 2013, 67, 47-54.	1.6	4

#	Article	IF	CITATIONS
19	Peptide fingerprinting of the neurotoxic fractions isolated from the secretions of sea anemones Stichodactyla helianthus and Bunodosoma granulifera. New members of the APETx-like family identified by a 454 pyrosequencing approach. Peptides, 2012, 34, 26-38.	2.4	41
20	Combining multidimensional liquid chromatography and MALDI–TOF-MS for the fingerprint analysis of secreted peptides from the unexplored sea anemone species Phymanthus crucifer. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 903, 30-39.	2.3	13
21	Recombinant in vitro assembled hepatitis C virus core particles induce strong specific immunity enhanced by formulation with an oil-based adjuvant. Biological Research, 2009, 42, .	3.4	11
22	Repair of UVB-Damaged Skin by the Antioxidant Sulphated Flavone Glycoside Thalassiolin B Isolated from the Marine Plant Thalassia testudinum Banks ex König. Marine Biotechnology, 2009, 11, 74-80.	2.4	34
23	Recombinant in vitro assembled hepatitis C virus core particles induce strong specific immunity enhanced by formulation with an oil-based adjuvant. Biological Research, 2009, 42, 41-56.	3.4	7
24	Multimeric HCV E2 protein obtained from pichia pastoris cells induces a strong immune response in mice. Molecular Biotechnology, 2007, 35, 225-235.	2.4	15
25	A C-terminal truncated hepatitis C virus core protein variant assembles in vitro into virus-like particles in the absence of structured nucleic acids. Biochemical and Biophysical Research Communications, 2005, 334, 901-906.	2.1	14
26	Interaction of a C-terminal Truncated Hepatitis C Virus Core Protein with Plasmid DNA Vaccine Leads toin vitro Assembly of Heterogeneous Virus-like Particles. American Journal of Infectious Diseases, 2005, 1, 66-72.	0.2	3
27	Crystallization and preliminary X-ray diffraction analysis of levansucrase (LsdA) fromGluconacetobacter diazotrophicusSRT4. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 181-183.	2.5	4
28	Nucleic acid binding properties and intermediates of HCV core protein multimerization in Pichia pastoris. Biochemical and Biophysical Research Communications, 2004, 323, 926-931.	2.1	10
29	In vitro assembly into virus-like particles is an intrinsic quality of Pichia pastoris derived HCV core protein. Biochemical and Biophysical Research Communications, 2004, 325, 68-74.	2.1	32
30	Structured HCV nucleocapsids composed of P21 core protein assemble primary in the nucleus of Pichia pastoris yeast. Biochemical and Biophysical Research Communications, 2003, 310, 48-53.	2.1	14
31	Nuclear localization of nucleocapsid-like particles and HCV core protein in hepatocytes of a chronically HCV-infected patient. Biochemical and Biophysical Research Communications, 2003, 310, 54-58.	2.1	31