Jennifer A Holm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/440912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences, 2020, 17, 3017-3044.	1.3	82
2	The Central Amazon Biomass Sink Under Current and Future Atmospheric CO ₂ : Predictions From Bigâ€Leaf and Demographic Vegetation Models. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005500.	1.3	23
3	Landsat near-infrared (NIR) band and ELM-FATES sensitivity to forest disturbances and regrowth in the Central Amazon. Biogeosciences, 2020, 17, 6185-6205.	1.3	7
4	Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nature Geoscience, 2019, 12, 736-741.	5.4	177
5	Species-Specific Shifts in Diurnal Sap Velocity Dynamics and Hysteretic Behavior of Ecophysiological Variables During the 2015–2016 El Niño Event in the Amazon Forest. Frontiers in Plant Science, 2019, 10, 830.	1.7	17
6	Identification of key parameters controlling demographically structured vegetation dynamics in a land surface model: CLM4.5(FATES). Geoscientific Model Development, 2019, 12, 4133-4164.	1.3	32
7	Vulnerability of Amazon forests to storm-driven tree mortality. Environmental Research Letters, 2018, 13, 054021.	2.2	49
8	Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 2018, 219, 851-869.	3.5	341
9	Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology, 2018, 24, 35-54.	4.2	478
10	Novel tropical forests: response to global change. New Phytologist, 2017, 213, 988-992.	3.5	6
11	Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances. Environmental Research Letters, 2017, 12, 025007.	2.2	18
12	Monoterpene â€~ <i>thermometer</i> ' of tropical forestâ€atmosphere response to climate warming. Plant, Cell and Environment, 2017, 40, 441-452.	2.8	52
13	Moderate forest disturbance as a stringent test for gap and big-leaf models. Biogeosciences, 2015, 12, 513-526.	1.3	16
14	Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest. Plants, 2015, 4, 678-690.	1.6	41
15	Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development, 2015, 8, 3593-3619.	1.3	192
16	Forest response to increased disturbance in the central Amazon and comparison to western Amazonian forests. Biogeosciences, 2014, 11, 5773-5794.	1.3	22
17	Dynamic Balancing of Isoprene Carbon Sources Reflects Photosynthetic and Photorespiratory Responses to Temperature Stress. Plant Physiology, 2014, 166, 2051-2064.	2.3	41
18	Interactive effects of chronic deer browsing and canopy gap disturbance on forest successional dynamics. Ecosphere, 2013, 4, 1-23,	1.0	16

Jennifer A Holm

#	Article	IF	CITATIONS
19	An inverse analysis of a matrix population model using a genetic algorithm. Ecological Informatics, 2012, 7, 41-45.	2.3	5
20	Gap model development, validation, and application to succession of secondary subtropical dry forests of Puerto Rico. Ecological Modelling, 2012, 233, 70-82.	1.2	23
21	Comparative Agroecosystem Sustainability of Five Honduran Crop Production Systems. International Journal of Environmental, Cultural, Economic and Social Sustainability, 2011, 7, 121-132.	0.1	0
22	Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico. Journal of Ecology, 2010, 98, 659-673.	1.9	92
23	Population Dynamics of the Dioecious Amazonian Palm <i>Mauritia flexuosa</i> : Simulation Analysis of Sustainable Harvesting. Biotropica, 2008, 40, 550-558.	0.8	100