Michael Newton Clifford

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4408840/michael-newton-clifford-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

168 58 14,995 121 h-index g-index citations papers 16,191 6.93 5.6 179 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
168	In vitro faecal fermentation of monomeric and oligomeric flavan-3-ols: Catabolic pathways and stoichiometry <i>Molecular Nutrition and Food Research</i> , 2022 , e2101090	5.9	2
167	A Practitioner's Dilemma Mass Spectrometry-Based Annotation and Identification of Human Plasma and Urinary Polyphenol Metabolites <i>Molecular Nutrition and Food Research</i> , 2022 , e2100985	5.9	3
166	In vivo study of the bioavailability and metabolic profile of (poly)phenols after sous-vide artichoke consumption. <i>Food Chemistry</i> , 2022 , 367, 130620	8.5	6
165	LC-MS Characterisation and Quantification of Known and Unknown (poly)phenol metabolites - Possible Pitfalls and their Avoidance <i>Molecular Nutrition and Food Research</i> , 2022 , e2101013	5.9	O
164	Variation in the Methylation of Caffeoylquinic Acids and Urinary Excretion of 3Smethoxycinnamic acid-4SSulfate After Apple Consumption by Volunteers. <i>Molecular Nutrition and Food Research</i> , 2021 , 65, e2100471	5.9	1
163	Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans. <i>Comprehensive Reviews in Food Science and Food Safety</i> , 2020 , 19, 1299-1352	16.4	48
162	Terms and nomenclature used for plant-derived components in nutrition and related research: efforts toward harmonization. <i>Nutrition Reviews</i> , 2020 , 78, 451-458	6.4	23
161	Plasma pharmacokinetics of (poly)phenol metabolites and catabolites after ingestion of orange juice by endurance trained men. <i>Free Radical Biology and Medicine</i> , 2020 , 160, 784-795	7.8	9
160	Flavanones 2020 , 439-495		1
159	Recommendations for standardizing nomenclature for dietary (poly)phenol catabolites. <i>American Journal of Clinical Nutrition</i> , 2020 , 112, 1051-1068	7	35
158	Phenyl-Evalerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. <i>Natural Product Reports</i> , 2019 , 36, 714-752	15.1	114
157	Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms. <i>British Journal of Nutrition</i> , 2018 , 119, 792-800	3.6	14
156	Chemical composition of coffee beans: an overview. <i>Burleigh Dodds Series in Agricultural Science</i> , 2018 , 195-214	2	2
155	Coffee intake, glucose metabolism and gene polymorphisms: response to Kawada. <i>British Journal of Nutrition</i> , 2018 , 120, 1319-1320	3.6	
154	Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. <i>Annual Review of Food Science and Technology</i> , 2017 , 8, 155-180	14.7	155
153	An Unambiguous Nomenclature for the Acyl-quinic Acids Commonly Known as Chlorogenic Acids. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 3602-3608	5.7	37
152	Surrogate Standards: A Cost-Effective Strategy for Identification of Phytochemicals. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 3589-3590	5.7	24

(2010-2017)

151	Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. <i>Biochemical Pharmacology</i> , 2017 , 139, 24-39	6	184
150	Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. <i>Natural Product Reports</i> , 2017 , 34, 1391-1421	15.1	159
149	A single serving of caffeinated coffee impairs postprandial glucose metabolism in overweight men. <i>British Journal of Nutrition</i> , 2015 , 114, 1218-25	3.6	21
148	In vitro colonic catabolism of orange juice (poly)phenols. <i>Molecular Nutrition and Food Research</i> , 2015 , 59, 465-75	5.9	64
147	Coffee: biochemistry and potential impact on health. Food and Function, 2014, 5, 1695-717	6.1	287
146	Orange juice (poly)phenols are highly bioavailable in humans. <i>American Journal of Clinical Nutrition</i> , 2014 , 100, 1378-84	7	104
145	Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. <i>American Journal of Clinical Nutrition</i> , 2013 , 98, 1619S-1630S	7	165
144	MALDI-TOF mass spectrometry: avoidance of artifacts and analysis of caffeine-precipitated SII thearubigins from 15 commercial black teas. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 4514-	-2 5 7	19
143	Purine Alkaloids: A Focus on Caffeine and Related Compounds in Beverages 2011 , 25-44		4
142	Phytochemicals in Teas and Tisanes and their Bioavailability 2011 , 45-98		6
142	Phytochemicals in Teas and Tisanes and their Bioavailability 2011 , 45-98 The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 3754-62	5.7	6 76
	The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the	5.7	
141	The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 3754-62	5.7	76
141	The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 3754-62 Phytochemicals in Coffee and the Bioavailability of Chlorogenic Acids 2011 , 143-168 Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of		76 4
141 140 139	The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 3754-62 Phytochemicals in Coffee and the Bioavailability of Chlorogenic Acids 2011 , 143-168 Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: evidence by tandem LC-MS. <i>Food and Function</i> , 2010 , 1, 180-99 In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male	6.1	76 4 64
141 140 139	The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 3754-62 Phytochemicals in Coffee and the Bioavailability of Chlorogenic Acids 2011 , 143-168 Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: evidence by tandem LC-MS. <i>Food and Function</i> , 2010 , 1, 180-99 In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male rats. <i>Drug Metabolism and Disposition</i> , 2010 , 38, 287-91	6.1	76 4 64 109
141 140 139 138	The antioxidant and chlorogenic acid profiles of whole coffee fruits are influenced by the extraction procedures. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 3754-62 Phytochemicals in Coffee and the Bioavailability of Chlorogenic Acids 2011 , 143-168 Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: evidence by tandem LC-MS. <i>Food and Function</i> , 2010 , 1, 180-99 In vivo bioavailability, absorption, excretion, and pharmacokinetics of [14C]procyanidin B2 in male rats. <i>Drug Metabolism and Disposition</i> , 2010 , 38, 287-91 The chemistry of low molecular weight black tea polyphenols. <i>Natural Product Reports</i> , 2010 , 27, 417-6 Bioavailability of dietary flavonoids and phenolic compounds. <i>Molecular Aspects of Medicine</i> , 2010 ,	6.1 4 2 15.1	76 4 64 109

133	A comparison of the in vitro biotransformation of (-)-epicatechin and procyanidin B2 by human faecal microbiota. <i>Molecular Nutrition and Food Research</i> , 2010 , 54, 747-59	5.9	132
132	Profiling and characterisation by liquid chromatography/multi-stage mass spectrometry of the chlorogenic acids in Gardeniae Fructus. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 3109-20	2.2	40
131	Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. <i>Rapid Communications in Mass Spectrometry</i> , 2010 , 24, 3387-404	2.2	107
130	Dietary phenolics: chemistry, bioavailability and effects on health. <i>Natural Product Reports</i> , 2009 , 26, 1001-43	15.1	1386
129	Investigation of the metabolic fate of dihydrocaffeic acid. <i>Biochemical Pharmacology</i> , 2008 , 75, 1218-29	6	39
128	Effect of dihydrocaffeic acid on UV irradiation of human keratinocyte HaCaT cells. <i>Archives of Biochemistry and Biophysics</i> , 2008 , 476, 196-204	4.1	29
127	Transport and metabolism of ferulic acid through the colonic epithelium. <i>Drug Metabolism and Disposition</i> , 2008 , 36, 190-7	4	124
126	Profiling the chlorogenic acids of sweet potato (Ipomoea batatas) from China. <i>Food Chemistry</i> , 2008 , 106, 147-152	8.5	61
125	LCMSn analysis of the cis isomers of chlorogenic acids. <i>Food Chemistry</i> , 2008 , 106, 379-385	8.5	189
124	Analysis of chlorogenic acids in beverages prepared from Chinese health foods and investigation, in vitro, of effects on glucose absorption in cultured Caco-2 cells. <i>Food Chemistry</i> , 2008 , 108, 369-373	8.5	56
123	Monocarboxylate transporter expression is associated with the absorption of benzoic acid in human intestinal epithelial cells. <i>Journal of the Science of Food and Agriculture</i> , 2007 , 87, 239-244	4.3	6
122	The effect of instant green tea on the foaming and rheological properties of egg albumen proteins. Journal of the Science of Food and Agriculture, 2007 , 87, 1810-1819	4.3	37
121	A systematic study of carboxylic acids in negative ion mode electrospray ionisation mass spectrometry providing a structural model for ion suppression. <i>Rapid Communications in Mass Spectrometry</i> , 2007 , 21, 2014-8	2.2	13
120	The aetiology of scombrotoxicosis. <i>International Journal of Food Science and Technology</i> , 2007 , 27, 721-7	73.\$	3
119	Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MSn. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 929-36	5.7	185
118	Profiling and characterization by LC-MSn of the galloylquinic acids of green tea, tara tannin, and tannic acid. <i>Journal of Agricultural and Food Chemistry</i> , 2007 , 55, 2797-807	5.7	85
117	Characterization by LC-MS(n) of four new classes of chlorogenic acids in green coffee beans: dimethoxycinnamoylquinic acids, diferuloylquinic acids, caffeoyl-dimethoxycinnamoylquinic acids, and feruloyl-dimethoxycinnamoylquinic acids. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 1957	5.7 7-69	167
116	Characterization by LC-MS(n) of four new classes of p-coumaric acid-containing diacyl chlorogenic acids in green coffee beans. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 4095-101	5.7	130

115	Profiling the chlorogenic acids of aster by HPLC-MS(n). <i>Phytochemical Analysis</i> , 2006 , 17, 384-93	3.4	96
114	The chlorogenic acids of Hemerocallis. <i>Food Chemistry</i> , 2006 , 95, 574-578	8.5	71
113	Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. <i>FEBS Letters</i> , 2005 , 579, 1653-7	3.8	240
112	Discriminating between the six isomers of dicaffeoylquinic acid by LC-MS(n). <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 3821-32	5.7	523
111	Dietary Flavonoids and Health Broadening the Perspective 2005 , 319-370		3
110	Inhibition of Staphylococcus aureus by oleuropein is mediated by hydrogen peroxide. <i>Journal of Food Protection</i> , 2005 , 68, 1492-6	2.5	13
109	Diet-derived phenols in plasma and tissues and their implications for health. <i>Planta Medica</i> , 2004 , 70, 1103-14	3.1	307
108	The cinnamoylamino acid conjugates of green robusta coffee beans. Food Chemistry, 2004, 87, 457-463	8.5	65
107	Quercetin metabolites downregulate cyclooxygenase-2 transcription in human lymphocytes ex vivo but not in vivo. <i>Journal of Nutrition</i> , 2004 , 134, 552-7	4.1	69
106	How should we assess the effects of exposure to dietary polyphenols in vitro?. <i>American Journal of Clinical Nutrition</i> , 2004 , 80, 15-21	7	405
105	Glucose-dependent insulinotropic polypeptide and insulin-like immunoreactivity in saliva following sham-fed and swallowed meals. <i>Journal of Endocrinology</i> , 2003 , 177, 407-12	4.7	35
104	Effects of black tea theafulvins on aflatoxin B(1) mutagenesis in the Ames test. <i>Mutagenesis</i> , 2003 , 18, 145-50	2.8	10
103	Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. <i>American Journal of Clinical Nutrition</i> , 2003 , 78, 728-3	3 7	429
102	Hierarchical scheme for LC-MSn identification of chlorogenic acids. <i>Journal of Agricultural and Food Chemistry</i> , 2003 , 51, 2900-11	5.7	945
101	Hepatic and intestinal cytochrome P450 and conjugase activities in rats treated with black tea theafulvins and theaflavins. <i>Food and Chemical Toxicology</i> , 2003 , 41, 1141-7	4.7	18
100	Bioavailability of dietary doses of 3H-labelled tea antioxidants (+)-catechin and (-)-epicatechin in rat. <i>Xenobiotica</i> , 2003 , 33, 743-53	2	46
99	Possible role for apple juice phenolic compounds in the acute modification of glucose tolerance and gastrointestinal hormone secretion in humans. <i>Journal of the Science of Food and Agriculture</i> , 2002 , 82, 1800-1805	4.3	81
98	Evaluation of the antigenotoxic potential of monomeric and dimeric flavanols, and black tea polyphenols against heterocyclic amine-induced DNA damage in human lymphocytes using the Comet assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis 2002, 515, 39-56.	3	58

97	Boron trifluoridel therate mediated synthesis of 3-desoxyanthocyanidins including a total synthesis of tricetanidin from black tea. <i>Tetrahedron Letters</i> , 2001 , 42, 9261-9263	2	18
96	The effect of drying on black tea quality. <i>Journal of the Science of Food and Agriculture</i> , 2001 , 81, 764-7	724.3	20
95	Interaction of (+)-catechin, (Pepicatechin, procyanidin B2 and procyanidin C1 with pooled human saliva in vitro. <i>Journal of the Science of Food and Agriculture</i> , 2001 , 81, 261-268	4.3	28
94	Gastrointestinal Effects of Complex Polyphenols from Red Wine and Tea in Experimental Animal Models 2001 , 49-66		
93	Tea flavonoids and cardiovascular health. <i>QJM - Monthly Journal of the Association of Physicians</i> , 2001 , 94, 277-82	2.7	101
92	Correlations between saliva protein composition and some TIIparameters of astringency. <i>Food Quality and Preference</i> , 2001 , 12, 145-152	5.8	94
91	Interaction of (+)-catechin, (Pepicatechin, procyanidin B2 and procyanidin C1 with pooled human saliva in vitro 2001 , 81, 261		1
90	Modulation of the mutagenicity of food carcinogens by oligomeric and polymeric procyanidins isolated from grape seeds: synergistic genotoxicity with N-nitrosopyrrolidine. <i>Journal of the Science of Food and Agriculture</i> , 2000 , 80, 91-101	4.3	12
89	Dietary hydroxybenzoic acid derivatives [hature, occurrence and dietary burden. <i>Journal of the Science of Food and Agriculture</i> , 2000 , 80, 1024-1032	4.3	206
88	Chlorogenic acids and other cinnamates Inature, occurrence, dietary burden, absorption and metabolism. <i>Journal of the Science of Food and Agriculture</i> , 2000 , 80, 1033-1043	4.3	695
87	Anthocyanins [hature, occurrence and dietary burden. <i>Journal of the Science of Food and Agriculture</i> , 2000 , 80, 1063-1072	4.3	603
86	Flavanones, chalcones and dihydrochalcones Inature, occurrence and dietary burden. <i>Journal of the Science of Food and Agriculture</i> , 2000 , 80, 1073-1080	4.3	283
85	Ellagitannins [hature, occurrence and dietary burden. <i>Journal of the Science of Food and Agriculture</i> , 2000 , 80, 1118-1125	4.3	341
84	Miscellaneous phenols in foods and beverages [hature, occurrence and dietary burden. <i>Journal of the Science of Food and Agriculture</i> , 2000 , 80, 1126-1137	4.3	60
83	Differential modulation of the genotoxicity of food carcinogens by naturally occurring monomeric and dimeric polyphenolics. <i>Environmental and Molecular Mutagenesis</i> , 2000 , 35, 86-98	3.2	22
82	Effect of complex polyphenols and tannins from red wine on DNA oxidative damage of rat colon mucosa in vivo. <i>European Journal of Nutrition</i> , 2000 , 39, 207-12	5.2	59
81	Hippuric acid as a major excretion product associated with black tea consumption. <i>Xenobiotica</i> , 2000 , 30, 317-26	2	115
80	Inhibition of 1,2-dimethylhydrazine-induced oxidative DNA damage in rat colon mucosa by black tea complex polyphenols. <i>Food and Chemical Toxicology</i> , 2000 , 38, 1085-8	4.7	40

79	Ellagitannins Ihature, occurrence and dietary burden 2000 , 80, 1118		1
78	Chlorogenic acids and other cinnamates hature, occurrence, dietary burden, absorption and metabolism 2000 , 80, 1033		12
77	Unexpected hyperchromic interactions during the chromatography of theafulvins and simple flavonoids. <i>Food Chemistry</i> , 1999 , 67, 143-146	8.5	12
76	Phenols, tannins and their transformation products in beverages: implications for health. <i>Journal of Chemical Technology and Biotechnology</i> , 1999 , 74, 376-377	3.5	
75	Chlorogenic acids and other cinnamates [hature, occurrence and dietary burden 1999 , 79, 362-372		903
74	Modulation of hepatic cytochrome P450 activity and carcinogen bioactivation by black and decaffeinated black tea. <i>Environmental Toxicology and Pharmacology</i> , 1999 , 7, 41-7	5.8	20
73	Consumption of tea modulates the urinary excretion of mutagens in rats treated with IQ. Role of caffeine. <i>Mutation Research - Genetic Toxicology and Environmental Mutagenesis</i> , 1999 , 441, 191-203	3	25
72	Proliferation of hepatic peroxisomes in rats following the intake of green or black tea. <i>Toxicology Letters</i> , 1999 , 109, 69-76	4.4	9
71	Chlorogenic acids and other cinnamates [hature, occurrence and dietary burden 1999 , 79, 362		9
70	Effect of gelatin (a model for salivary PRP) on the sensory astringency of 5-O-caffeoylquinic acid and tannic acid. <i>Annals of the New York Academy of Sciences</i> , 1998 , 855, 823-7	6.5	5
69	EVIDENCE THAT SALIVARY PROTEINS ARE INVOLVED IN ASTRINGENCY. <i>Journal of Sensory Studies</i> , 1998 , 13, 29-43	2.2	84
68	Isolation, characterisation and determination of biological activity of coffee proanthocyanidins. <i>Journal of the Science of Food and Agriculture</i> , 1998 , 77, 368-372	4.3	33
67	QSARs for the effect of benzaldehydes on foodborne bacteria and the role of sulfhydryl groups as targets of their antibacterial activity. <i>Journal of Applied Microbiology</i> , 1998 , 84, 207-12	4.7	28
66	Contribution of caffeine and flavanols in the induction of hepatic Phase II activities by green tea. <i>Food and Chemical Toxicology</i> , 1998 , 36, 617-21	4.7	53
65	Contribution of theafulvins to the antimutagenicity of black tea: their mechanism of action. <i>Mutagenesis</i> , 1998 , 13, 631-6	2.8	39
64	Effect of pH on Astringency in Model Solutions and Wines. <i>Journal of Agricultural and Food Chemistry</i> , 1997 , 45, 2211-2216	5.7	64
63	Red Wine and Model Wine Astringency as Affected by Malic and Lactic Acid. <i>Journal of Food Science</i> , 1997 , 62, 416-420	3.4	45
62	EVALUATION OF BITTERNESS AND ASTRINGENCY OF (+)-CATECHIN AND (-)-EPICATECHIN IN RED WINE AND IN MODEL SOLUTION. <i>Journal of Sensory Studies</i> , 1997 , 12, 25-37	2.2	92

61	A polyphenolic pigment from black tea. <i>Phytochemistry</i> , 1997 , 46, 1397-1402	4	53
60	The Stability of Theaflavins During HPLC Analysis of a Decaffeinated Aqueous Tea Extract. <i>Journal of the Science of Food and Agriculture</i> , 1997 , 74, 536-540	4.3	10
59	Fractionation of green tea extracts: correlation of antimutagenic effect with flavanol content. <i>Journal of the Science of Food and Agriculture</i> , 1997 , 75, 453-462	4.3	18
58	A comparison of quantitative structure-activity relationships for the effect of benzoic and cinnamic acids on Listeria monocytogenes using multiple linear regression, artificial neural network and fuzzy systems. <i>Journal of Applied Microbiology</i> , 1997 , 82, 168-176	4.7	25
57	A comparison of the antimutagenic potential of green, black and decaffeinated teas: contribution of flavanols to the antimutagenic effect. <i>Mutagenesis</i> , 1996 , 11, 597-603	2.8	39
56	Mutagenicity of white grape juice in the Ames test. Food and Chemical Toxicology, 1996, 34, 559-62	4.7	14
55	Contribution of phenols, quinones and reactive oxygen species to the mutagenicity of white grape juice in the Ames test. <i>Food and Chemical Toxicology</i> , 1996 , 34, 869-72	4.7	14
54	Quantitative structure activity relationship for the effect of benzoic acids, cinnamic acids and benzaldehydes on Listeria monocytogenes. <i>Journal of Applied Bacteriology</i> , 1996 , 80, 303-10		72
53	Caffeoyl-tyrosine and Angola II as characteristic markers for Angolan robusta coffees. <i>Food Chemistry</i> , 1995 , 53, 309-313	8.5	24
52	Induction of hepatic CYP1A2 by the oral administration of caffeine to rats: lack of association with the Ah locus. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 1995 , 1272, 89-94	6.9	33
51	Stimulation of rat hepatic UDP-glucuronosyl transferase activity following treatment with green tea. <i>Food and Chemical Toxicology</i> , 1995 , 33, 27-30	4.7	59
50	The formation of thearubigin-like substances by in-vitro polyphenol oxidase-mediated fermentation of individual flavan-3-ols. <i>Journal of the Science of Food and Agriculture</i> , 1995 , 67, 501-505	4.3	24
49	Use of Porter's reagents for the characterisation of thearubigins and other non-proanthocyanidins. Journal of the Science of Food and Agriculture, 1995, 68, 33-38	4.3	10
48	The analysis by HPLC of green, black and Pu&r teas produced in Yunnan. <i>Journal of the Science of Food and Agriculture</i> , 1995 , 69, 535-540	4.3	64
47	Selective induction of rat hepatic CYP1 and CYP4 proteins and of peroxisomal proliferation by green tea. <i>Carcinogenesis</i> , 1994 , 15, 2575-9	4.6	68
46	Analysis of proanthocyanidins in coffee pulp. <i>Journal of the Science of Food and Agriculture</i> , 1994 , 65, 157-162	4.3	17
45	Marked antimutagenic potential of aqueous green tea extracts: mechanism of action. <i>Mutagenesis</i> , 1994 , 9, 325-31	2.8	68
44	Sensory astringency of 5-O-caffeoylquinic acid, tannic acid and grape-seed tannin by a time-intensity procedure. <i>Journal of the Science of Food and Agriculture</i> , 1993 , 61, 57-64	4.3	41

43	Tea cream formation: The contribution of black tea phenolic pigments determined by HPLC. Journal of the Science of Food and Agriculture, 1993 , 63, 77-86	4.3	49
42	The role of (Pepicatechin and polyphenol oxidase in the coupled oxidative breakdown of the Science of Food and Agriculture, 1993 , 63, 435-438	4.3	41
41	Tetrahydro-beta-carboline carboxylic acids in smoked foods. <i>Food Additives and Contaminants</i> , 1992 , 9, 83-95		14
40	The evaluation in the Ames test of the mutagenicity of tetrahydro-beta-carboline-3-carboxylic acids from smoked foods. <i>Food Additives and Contaminants</i> , 1992 , 9, 183-7		2
39	Do saxitoxin-like substances have a role in scombrotoxicosis?. <i>Food Additives and Contaminants</i> , 1992 , 9, 657-67		10
38	Caffeine and theobromine in green beans from Mascarocoffea. <i>Phytochemistry</i> , 1992 , 31, 1271-1272	4	17
37	Comparison of radioimmunoassay and spectrophotometric analysis for the quantitation of hypoxanthine in fish muscle. <i>Food Chemistry</i> , 1991 , 42, 1-17	8.5	7
36	Phenols and caffeine in wet-processed coffee beans and coffee pulp. <i>Food Chemistry</i> , 1991 , 40, 35-42	8.5	56
35	Tannins in wet-processed coffee beans and coffee pulp. Food Chemistry, 1991, 40, 191-200	8.5	25
34	Caffeine from green beans of Mascarocoffea. <i>Phytochemistry</i> , 1991 , 30, 4039-4040	4	18
33	Caffeine from green beans of Mascarocoffea. <i>Phytochemistry</i> , 1991 , 30, 4039-4040 Scombroid-fish poisoning. <i>New England Journal of Medicine</i> , 1991 , 325, 515-7	59.2	18
33	Scombroid-fish poisoning. <i>New England Journal of Medicine</i> , 1991 , 325, 515-7 The importance of endogenous histamine relative to dietary histamine in the aetiology of		11
33	Scombroid-fish poisoning. New England Journal of Medicine, 1991, 325, 515-7 The importance of endogenous histamine relative to dietary histamine in the aetiology of scombrotoxicosis. Food Additives and Contaminants, 1991, 8, 531-42 Is there a role for amines other than histamines in the aetiology of scombrotoxicosis?. Food		11 40
33 32 31	Scombroid-fish poisoning. New England Journal of Medicine, 1991, 325, 515-7 The importance of endogenous histamine relative to dietary histamine in the aetiology of scombrotoxicosis. Food Additives and Contaminants, 1991, 8, 531-42 Is there a role for amines other than histamines in the aetiology of scombrotoxicosis?. Food Additives and Contaminants, 1991, 8, 641-51 Black tea thearubigins Their HPLC separation and preparation during in-vitro oxidation. Journal of	59.2	11 40 34
33 32 31 30	Scombroid-fish poisoning. New England Journal of Medicine, 1991, 325, 515-7 The importance of endogenous histamine relative to dietary histamine in the aetiology of scombrotoxicosis. Food Additives and Contaminants, 1991, 8, 531-42 Is there a role for amines other than histamines in the aetiology of scombrotoxicosis?. Food Additives and Contaminants, 1991, 8, 641-51 Black tea thearubiginstheir HPLC separation and preparation during in-vitro oxidation. Journal of the Science of Food and Agriculture, 1990, 50, 547-561 Chlorogenic acids and purine alkaloids contents of Matt[Ilex paraguariensis) leaf and beverage.	59.2	11403453
33 32 31 30 29	Scombroid-fish poisoning. New England Journal of Medicine, 1991, 325, 515-7 The importance of endogenous histamine relative to dietary histamine in the aetiology of scombrotoxicosis. Food Additives and Contaminants, 1991, 8, 531-42 Is there a role for amines other than histamines in the aetiology of scombrotoxicosis?. Food Additives and Contaminants, 1991, 8, 641-51 Black tea thearubiginstheir HPLC separation and preparation during in-vitro oxidation. Journal of the Science of Food and Agriculture, 1990, 50, 547-561 Chlorogenic acids and purine alkaloids contents of Matt(lex paraguariensis) leaf and beverage. Food Chemistry, 1990, 35, 13-21 Reduced aflatoxin production by Aspergillus parasiticus after growth on a caffeine-containing	59.2 4.3 8.5	1140345396

25	Characterisation of chlorogenic acids by simultaneous isomerisation and transesterification with tetramethylammonium hydroxide. <i>Food Chemistry</i> , 1989 , 33, 115-123	8.5	55
24	Chlorogenic acids and caffeine as possible taxonomic criteria in Coffea and Psilanthus. <i>Phytochemistry</i> , 1989 , 28, 829-838	4	68
23	Caffeoyltyrosine from green robusta coffee beans. <i>Phytochemistry</i> , 1989 , 28, 1989-1990	4	32
22	The chlorogenic acids content of green robusta coffee beans as a possible index of geographic origin. <i>Food Chemistry</i> , 1988 , 29, 291-298	8.5	43
21	Apparent molar volumes and tastes of molecules with more than one sapophore. <i>Chemical Senses</i> , 1987 , 12, 397-409	4.8	86
20	Points: Coffee, cholesterol, and colon cancer 1987 , 294, 312-312		
19	The chlorogenic acids content of coffee substitutes. <i>Food Chemistry</i> , 1987 , 24, 99-107	8.5	16
18	Chlorogenic acidstonfounders of coffee-serum cholesterol relationships. <i>Food Chemistry</i> , 1987 , 24, 77-80	8.5	20
17	The influence of coffee bean maturity on the content of chlorogenic acids, caffeine and trigonelline. <i>Food Chemistry</i> , 1987 , 26, 59-69	8.5	58
16	Coffee bean dicaffeoylquinic acids. <i>Phytochemistry</i> , 1986 , 25, 1767-1769	4	49
		4	
15	Chlorogenic acidsTheir complex nature and routine determination in coffee beans. <i>Food Chemistry</i> , 1979 , 4, 63-71	8.5	34
15 14		, i	
	Chemistry, 1979 , 4, 63-71 The measurement of feruloylquinic acids and caffeoylquinic acids in coffee beans. Development of the technique and its preliminary application to green coffee beans. <i>Journal of the Science of Food</i>	8.5	34
14	Chemistry, 1979, 4, 63-71 The measurement of feruloylquinic acids and caffeoylquinic acids in coffee beans. Development of the technique and its preliminary application to green coffee beans. Journal of the Science of Food and Agriculture, 1976, 27, 73-84 The use of poly-n-vinylpyrrolidone as the adsorbent for the chromatographic separation of	8.5	34 79
14	Chemistry, 1979, 4, 63-71 The measurement of feruloylquinic acids and caffeoylquinic acids in coffee beans. Development of the technique and its preliminary application to green coffee beans. Journal of the Science of Food and Agriculture, 1976, 27, 73-84 The use of poly-n-vinylpyrrolidone as the adsorbent for the chromatographic separation of chlorogenic acids and other phenolic compounds. Journal of Chromatography A, 1974, 94, 261-266	8.5 4.3 4.5	34 79 22
14 13	The measurement of feruloylquinic acids and caffeoylquinic acids in coffee beans. Development of the technique and its preliminary application to green coffee beans. <i>Journal of the Science of Food and Agriculture</i> , 1976 , 27, 73-84 The use of poly-n-vinylpyrrolidone as the adsorbent for the chromatographic separation of chlorogenic acids and other phenolic compounds. <i>Journal of Chromatography A</i> , 1974 , 94, 261-266 Specificity of acidic phloroglucinol reagents. <i>Journal of Chromatography A</i> , 1974 , 94, 321-324 Metaperiodatell new structure-specific locating reagent for phenolic compounds. <i>Journal of</i>	8.5 4.3 4.5	34792250
14 13 12	Chemistry, 1979, 4, 63-71 The measurement of feruloylquinic acids and caffeoylquinic acids in coffee beans. Development of the technique and its preliminary application to green coffee beans. Journal of the Science of Food and Agriculture, 1976, 27, 73-84 The use of poly-n-vinylpyrrolidone as the adsorbent for the chromatographic separation of chlorogenic acids and other phenolic compounds. Journal of Chromatography A, 1974, 94, 261-266 Specificity of acidic phloroglucinol reagents. Journal of Chromatography A, 1974, 94, 321-324 Metaperiodate® new structure-specific locating reagent for phenolic compounds. Journal of Chromatography A, 1973, 86, 222-224	8.5 4.3 4.5	34 79 22 50

LIST OF PUBLICATIONS

	7	Terpenes47-101	14
	6	Secondary Metabolites in Fruits, Vegetables, Beverages and Other Plant-based Dietary Components208-302	53
	5	Phenols, Polyphenols and Tannins: An Overview1-24	52
	4	Sulphur-Containing Compounds25-46	9
,	3	Absorption and Metabolism of Dietary Plant Secondary Metabolites303-351	34
	2	Functions of the Human Intestinal Flora: The Use of Probiotics and Prebiotics174-207	1
	1	Anthocyanins Ihature, occurrence and dietary burden	3