Valeria Pettorino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4408535/publications.pdf Version: 2024-02-01

VALERIA PETTORINO

#	Article	IF	CITATIONS
1	Joint Analysis of BICEP2/ <i>Keck Array</i> and <i>Planck</i> Data. Physical Review Letters, 2015, 114, 101301.	2.9	819
2	Cosmology and Fundamental Physics with the Euclid Satellite. Living Reviews in Relativity, 2013, 16, 6.	8.2	683
3	Cosmology and fundamental physics with the Euclid satellite. Living Reviews in Relativity, 2018, 21, 2.	8.2	602
4	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	2.4	350
5	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A19.	2.1	273
6	Snowmass2021 - Letter of interest cosmology intertwined II: The hubble constant tension. Astroparticle Physics, 2021, 131, 102605.	1.9	228
7	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A191.	2.1	194
8	Hydrodynamical <i>N</i> -body simulations of coupled dark energy cosmologies. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1684-1702.	1.6	185
9	Coupled and extended quintessence: Theoretical differences and structure formation. Physical Review D, 2008, 77, .	1.6	143
10	The darkness that shaped the void: dark energy and cosmic voids. Monthly Notices of the Royal Astronomical Society, 2012, 426, 440-461.	1.6	130
11	COUPLED QUINTESSENCE AND THE COINCIDENCE PROBLEM. Modern Physics Letters A, 2003, 18, 831-842.	0.5	112
12	Update on coupled dark energy and the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> tension. Physical Review D, 2020, 101, .	1.6	95
13	Testing modified gravity with Planck: The case of coupled dark energy. Physical Review D, 2013, 88, .	1.6	87
14	How early is early dark energy?. Physical Review D, 2013, 87, .	1.6	79
15	Determining <i>H</i> ₀ with Bayesian hyper-parameters. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 056-056.	1.9	77
16	Constraints on coupled dark energy using CMB data from WMAP and South Pole Telescope. Physical Review D, 2012, 86, .	1.6	67
17	Effects of modified gravity on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>B</mml:mi></mml:math> -mode polarization. Physical Review D, 2014, 90, .	1.6	64
18	Clarifying spherical collapse in coupled dark energy cosmologies. Physical Review D, 2010, 82, .	1.6	62

Valeria Pettorino

#	Article	IF	CITATIONS
19	A comparison of structure formation in minimally and non-minimally coupled quintessence models. Monthly Notices of the Royal Astronomical Society, 2014, 437, 547-561.	1.6	54
20	Extended quintessence with an exponential coupling. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 014-014.	1.9	53
21	Testing coupled dark energy with next-generation large-scale observations. Physical Review D, 2012, 85, .	1.6	51
22	Non-local gravity and comparison with observational datasets. II. Updated results and Bayesian model comparison with $\hat{ h}$ CDM. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 068-068.	1.9	50
23	Breaking degeneracies in modified gravity with higher (than 2nd) order weak-lensing statistics. Astronomy and Astrophysics, 2018, 619, A38.	2.1	48
24	Non-local gravity and comparison with observational datasets. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 044-044.	1.9	47
25	High-z massive clusters as a test for dynamical coupled dark energy. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 412, L1-L5.	1.2	41
26	KiDSÂ+ÂGAMA: constraints on horndeski gravity from combined large-scale structure probes. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2155-2177.	1.6	39
27	Testing (modified) gravity with 3D and tomographic cosmic shear. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3725-3738.	1.6	35
28	Linear and non-linear Modified Gravity forecasts with future surveys. Physics of the Dark Universe, 2017, 18, 73-104.	1.8	34
29	Scaling solutions in scalar–tensor cosmologies. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 003-003.	1.9	32
30	Neutrino lumps and the cosmic microwave background. Physical Review D, 2010, 82, .	1.6	31
31	Maps of CMB lensing deflection from N-body simulations in Coupled Dark Energy Cosmologies. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 004-004.	1.9	30
32	Friction in gravitational waves: A test for early-time modified gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 742, 353-357.	1.5	29
33	Distinguishing standard and modified gravity cosmologies with machine learning. Physical Review D, 2019, 100, .	1.6	29
34	Non-minimally coupled dark matter: effective pressure and structure formation. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 027-027.	1.9	28
35	On the dissection of degenerate cosmologies with machine learning. Monthly Notices of the Royal Astronomical Society, 2019, 487, 104-122.	1.6	27
36	Hydrodynamical simulations of galaxy clusters in dark energy cosmologies - I. General properties. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2758-2772.	1.6	26

Valeria Pettorino

#	Article	IF	CITATIONS
37	Surfing gravitational waves: can bigravity survive growing tensor modes?. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 052-052.	1.9	26
38	Constraining neutrino masses with weak-lensing multiscale peak counts. Physical Review D, 2020, 102, .	1.6	26
39	Early dark energy in the pre- and postrecombination epochs. Physical Review D, 2021, 104, .	1.6	25
40	Dynamics of neutrino lumps in growing neutrino quintessence. Physical Review D, 2016, 94, .	1.6	22
41	Oscillating non-linear large-scale structures in growing neutrino quintessence. Monthly Notices of the Royal Astronomical Society, 2011, 418, 214-229.	1.6	21
42	Fitting and forecasting coupled dark energy in the non-linear regime. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 045-045.	1.9	21
43	Can AMS-02 discriminate the origin of an anti-proton signal?. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 078-078.	1.9	14
44	Starletâ,,"1-norm for weak lensing cosmology. Astronomy and Astrophysics, 2021, 645, L11.	2.1	12
45	Euclid: the selection of quiescent and star-forming galaxies using observed colours. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2337-2354.	1.6	9
46	Clustering in growing neutrino cosmologies. , 2009, , .		7
47	Beyond self-acceleration: Force- and fluid-acceleration. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 802, 135214.	1.5	2
48	Growing neutrino cosmologies and impact on large scale structures. Nuclear Physics, Section B, Proceedings Supplements, 2009, 194, 300-306.	0.5	0
49	LESS IS MORE: HOW COSMIC VOIDS CAN SHED LIGHT ON DARK ENERGY. , 2015, , .		0