Elvira Mc Fortunato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4407958/publications.pdf

Version: 2024-02-01

746 papers

28,928 citations

7069 78 h-index 138 g-index

763 all docs 763 docs citations

763 times ranked 22318 citing authors

#	Article	IF	CITATIONS
1	Oxide Semiconductor Thinâ€Film Transistors: A Review of Recent Advances. Advanced Materials, 2012, 24, 2945-2986.	11.1	2,590
2	Transparent Conducting Oxides for Photovoltaics. MRS Bulletin, 2007, 32, 242-247.	1.7	788
3	Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature. Advanced Materials, 2005, 17, 590-594.	11.1	787
4	Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters, 2004, 85, 2541-2543.	1.5	500
5	Effect of different dopant elements on the properties of ZnO thin films. Vacuum, 2002, 64, 281-285.	1.6	336
6	Recent advances in ZnO transparent thin film transistors. Thin Solid Films, 2005, 487, 205-211.	0.8	335
7	Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films, 2003, 427, 401-405.	0.8	277
8	The 2016 oxide electronic materials and oxide interfaces roadmap. Journal Physics D: Applied Physics, 2016, 49, 433001.	1.3	266
9	Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Applied Physics Letters, 2010, 97, .	1.5	264
10	High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper. IEEE Electron Device Letters, 2008, 29, 988-990.	2.2	245
11	Toward High-Performance Amorphous GIZO TFTs. Journal of the Electrochemical Society, 2009, 156, H161.	1.3	235
12	Complementary Metal Oxide Semiconductor Technology With and On Paper. Advanced Materials, 2011, 23, 4491-4496.	11.1	235
13	Laserâ€Induced Graphene Strain Sensors Produced by Ultraviolet Irradiation of Polyimide. Advanced Functional Materials, 2018, 28, 1805271.	7.8	228
14	Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Applied Surface Science, 2008, 254, 3949-3954.	3.1	226
15	Al-doped ZnO thin films by sol–gel method. Surface and Coatings Technology, 2004, 180-181, 659-662.	2.2	218
16	Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25, 094008.	1.3	218
17	Gate-bias stress in amorphous oxide semiconductors thin-film transistors. Applied Physics Letters, 2009, 95, .	1.5	213
18	High mobility indium free amorphous oxide thin film transistors. Applied Physics Letters, 2008, 92, .	1.5	210

#	Article	IF	Citations
19	Metal oxide nanostructures for sensor applications. Semiconductor Science and Technology, 2019, 34, 043001.	1.0	201
20	Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide. Journal of Non-Crystalline Solids, 2006, 352, 1749-1752.	1.5	196
21	A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology, 2014, 25, 094006.	1.3	193
22	Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors. Journal of Applied Physics, 2007, 101, 044505.	1.1	192
23	Gallium–Indium–Zinc-Oxide-Based Thin-Film Transistors: Influence of the Source/Drain Material. IEEE Transactions on Electron Devices, 2008, 55, 954-960.	1.6	185
24	Influence of the post-treatment on the properties of ZnO thin films. Thin Solid Films, 2001, 383, 277-280.	0.8	182
25	Zinc oxide as an ozone sensor. Journal of Applied Physics, 2004, 96, 1398-1408.	1.1	181
26	Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs. Physica Status Solidi - Rapid Research Letters, 2007, 1, R34-R36.	1.2	171
27	Performances presented by zinc oxide thin films deposited by spray pyrolysis. Thin Solid Films, 1999, 337, 176-179.	0.8	169
28	Fully Solution-Processed Low-Voltage Aqueous In ₂ O ₃ Thin-Film Transistors Using an Ultrathin ZrO _{<i>x</i>} Dielectric. ACS Applied Materials & Dielectrics and Materials & Dielectrics and Diele	4.0	166
29	Lowâ€Temperature, Nontoxic Waterâ€Induced Metalâ€Oxide Thin Films and Their Application in Thinâ€Film Transistors. Advanced Functional Materials, 2015, 25, 2564-2572.	7.8	161
30	Thin-film transistors based on p-type Cu2O thin films produced at room temperature. Applied Physics Letters, 2010, 96, .	1.5	160
31	TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Solar Energy Materials and Solar Cells, 2015, 132, 549-556.	3.0	155
32	Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications. Solar Energy Materials and Solar Cells, 2008, 92, 1605-1610.	3.0	151
33	Zinc oxide, a multifunctional material: from material to device applications. Applied Physics A: Materials Science and Processing, 2009, 96, 197-205.	1.1	149
34	Waterâ€Induced Scandium Oxide Dielectric for Lowâ€Operating Voltage n†and pâ€Type Metalâ€Oxide Thinâ€ Transistors. Advanced Functional Materials, 2015, 25, 7180-7188.	Film 7.8	147
35	Multifunctional cellulose-paper for light harvesting and smart sensing applications. Journal of Materials Chemistry C, 2018, 6, 3143-3181.	2.7	147
36	Solution Combustion Synthesis: Lowâ€Temperature Processing for pâ€Type Cu:NiO Thin Films for Transparent Electronics. Advanced Materials, 2017, 29, 1701599.	11.1	145

#	Article	IF	CITATIONS
37	WO ₃ Nanoparticle-Based Conformable pH Sensor. ACS Applied Materials & Diterfaces, 2014, 6, 12226-12234.	4.0	140
38	Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films. Thin Solid Films, 2007, 515, 8562-8566.	0.8	139
39	Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosensors and Bioelectronics, 2019, 124-125, 167-175.	5.3	135
40	Role of Ga2O3–In2O3–ZnO channel composition on the electrical performance of thin-film transistors. Materials Chemistry and Physics, 2011, 131, 512-518.	2.0	134
41	Gold on paper–paper platform for Au-nanoprobe TB detection. Lab on A Chip, 2012, 12, 4802.	3.1	129
42	Write-erase and read paper memory transistor. Applied Physics Letters, 2008, 93, .	1.5	127
43	High field-effect mobility zinc oxide thin film transistors produced at room temperature. Journal of Non-Crystalline Solids, 2004, 338-340, 806-809.	1.5	124
44	Recyclable, Flexible, Lowâ€Power Oxide Electronics. Advanced Functional Materials, 2013, 23, 2153-2161.	7.8	124
45	Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Applied Physics Letters, 2016, 108, .	1.5	122
46	Synthesis of Long ZnO Nanorods under Microwave Irradiation or Conventional Heating. Journal of Physical Chemistry C, 2014, 118, 14629-14639.	1.5	120
47	Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering. Vacuum, 2002, 64, 293-297.	1.6	117
48	Imidazole: Prospect Solvent for Lignocellulosic Biomass Fractionation and Delignification. ACS Sustainable Chemistry and Engineering, 2016, 4, 1643-1652.	3.2	117
49	High mobility hydrogenated zinc oxide thin films. Solar Energy Materials and Solar Cells, 2017, 163, 255-262.	3.0	116
50	Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chemistry - A European Journal, 2020, 26, 9099-9125.	1.7	115
51	Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Distribution (2021, 13, 10210-10221.	4.0	115
52	Transport in high mobility amorphous wide band gap indium zinc oxide films. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, R95-R97.	0.8	113
53	Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature. Solar Energy Materials and Solar Cells, 2014, 120, 109-115.	3.0	111
54	A Review on Cu ₂ O and Cu ^l -Based <l>p</l> -Type Semiconducting Transparent Oxide Materials: Promising Candidates for New Generation Oxide Based Electronics. Reviews in Advanced Sciences and Engineering, 2013, 2, 273-304.	0.6	107

#	Article	IF	Citations
55	Aqueous Combustion Synthesis of Aluminum Oxide Thin Films and Application as Gate Dielectric in GZTO Solution-Based TFTs. ACS Applied Materials & Early Interfaces, 2014, 6, 19592-19599.	4.0	107
56	Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. Journal of Materials Science, 2015, 50, 5777-5787.	1.7	105
57	Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films, 2002, 420-421, 70-75.	0.8	103
58	High quality conductive gallium-doped zinc oxide films deposited at room temperature. Thin Solid Films, 2004, 451-452, 443-447.	0.8	103
59	Imaging the Anomalous Charge Distribution Inside CsPbBr ₃ Perovskite Quantum Dots Sensitized Solar Cells. ACS Nano, 2017, 11, 10214-10221.	7.3	103
60	The Effect of Deposition Conditions and Annealing on the Performance of High-Mobility GIZO TFTs. Electrochemical and Solid-State Letters, 2008, 11, H248.	2.2	101
61	Thin Film Silicon Photovoltaic Cells on Paper for Flexible Indoor Applications. Advanced Functional Materials, 2015, 25, 3592-3598.	7.8	101
62	Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells. Nano Energy, 2019, 59, 91-101.	8.2	100
63	Recent Progress in Solutionâ€Based Metal Oxide Resistive Switching Devices. Advanced Materials, 2021, 33, e2004328.	11.1	99
64	High-performance fully amorphous bilayer metal-oxide thin film transistors using ultra-thin solution-processed ZrOx dielectric. Applied Physics Letters, 2014, 105, 113509.	1.5	98
65	Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence. Thin Solid Films, 2003, 442, 121-126.	0.8	97
66	Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs. Thin Solid Films, 2007, 515, 8450-8454.	0.8	95
67	New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering. Thin Solid Films, 2003, 442, 102-106.	0.8	92
68	Electronics with and on paper. Physica Status Solidi - Rapid Research Letters, 2011, 5, 332-335.	1.2	91
69	Reusable Celluloseâ€Based Hydrogel Sticker Film Applied as Gate Dielectric in Paper Electrolyteâ€Gated Transistors. Advanced Functional Materials, 2017, 27, 1606755.	7.8	90
70	Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide. Journal of Non-Crystalline Solids, 2006, 352, 1756-1760.	1.5	89
71	Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings. Thin Solid Films, 2006, 511-512, 295-298.	0.8	87
72	Low-temperature, nontoxic water-induced high-k zirconium oxide dielectrics for low-voltage, high-performance oxide thin-film transistors. Journal of Materials Chemistry C, 2016, 4, 10715-10721.	2.7	87

#	Article	IF	CITATIONS
73	Office paper decorated with silver nanostars - an alternative cost effective platform for trace analyte detection by SERS. Scientific Reports, 2017, 7, 2480.	1.6	86
74	Electron transport and optical characteristics in amorphous indium zinc oxide films. Journal of Non-Crystalline Solids, 2006, 352, 1471-1474.	1.5	83
75	Insight on the SU-8 resist as passivation layer for transparent Ga2O3–In2O3–ZnO thin-film transistors. Journal of Applied Physics, 2010, 108, .	1.1	83
76	Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study. Materials, 2016, 9, 299.	1.3	83
77	Production and characterization of zinc oxide thin films for room temperature ozone sensing. Thin Solid Films, 2002, 418, 45-50.	0.8	82
78	High-mobility p-type NiO _x thin-film transistors processed at low temperatures with Al ₂ O ₃ high-k dielectric. Journal of Materials Chemistry C, 2016, 4, 9438-9444.	2.7	82
79	Validating silicon polytrodes with paired juxtacellular recordings: method and dataset. Journal of Neurophysiology, 2016, 116, 892-903.	0.9	81
80	High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications. Solar Energy Materials and Solar Cells, 2009, 93, 92-97.	3.0	80
81	High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors. Solid-State Electronics, 2008, 52, 443-448.	0.8	79
82	Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives. Sensors, 2015, 15, 10380-10398.	2.1	78
83	Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost <i>in situ</i> synthesis. New Journal of Chemistry, 2018, 42, 1052-1060.	1.4	78
84	Microstructure and gas-sensing properties of sol–gel ZnO thin films. Thin Solid Films, 2008, 516, 1512-1515.	0.8	76
85	A Sustainable Approach to Flexible Electronics with Zinc‶in Oxide Thinâ€Film Transistors. Advanced Electronic Materials, 2018, 4, 1800032.	2.6	76
86	Influence of the doping and annealing atmosphere on zinc oxide thin films deposited by spray pyrolysis. Vacuum, 1999, 52, 45-49.	1.6	75
87	Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria using Tungsten Trioxide Nanoprobes. Scientific Reports, 2015, 5, 9910.	1.6	75
88	Does Impedance Matter When Recording Spikes With Polytrodes?. Frontiers in Neuroscience, 2018, 12, 715.	1.4	74
89	Effect of Mg doping on Cu 2 O thin films and their behavior on the TiO 2 /Cu 2 O heterojunction solar cells. Solar Energy Materials and Solar Cells, 2016, 147, 27-36.	3.0	73
90	High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature. Thin Solid Films, 2006, 502, 104-107.	0.8	71

#	Article	IF	CITATIONS
91	Thermoelectric properties of V2O5 thin films deposited by thermal evaporation. Applied Surface Science, 2013, 282, 590-594.	3.1	71
92	Synthesis of WO 3 nanoparticles for biosensing applications. Sensors and Actuators B: Chemical, 2016, 223, 186-194.	4.0	71
93	Performance and Stability of Low Temperature Transparent Thin-Film Transistors Using Amorphous Multicomponent Dielectrics. Journal of the Electrochemical Society, 2009, 156, H824.	1.3	70
94	Zinc concentration dependence study of solution processed amorphous indium gallium zinc oxide thin film transistors using high-k dielectric. Applied Physics Letters, 2010, 97, .	1.5	70
95	In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film transistors. Journal of Materials Chemistry C, 2017, 5, 2524-2530.	2.7	70
96	Large-area 1D thin-film position-sensitive detector with high detection resolution. Sensors and Actuators A: Physical, 1995, 51, 135-142.	2.0	68
97	Investigations on high visible to near infrared transparent and high mobility Mo doped In2O3 thin films prepared by spray pyrolysis technique. Solar Energy Materials and Solar Cells, 2010, 94, 406-412.	3.0	68
98	Papertronics: Multigate paper transistor for multifunction applications. Applied Materials Today, 2018, 12, 402-414.	2.3	68
99	Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering. Surface and Coatings Technology, 2002, 151-152, 247-251.	2.2	67
100	Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2143-2148.	0.8	67
101	P-type ZnO thin film deposited by spray pyrolysis technique: The effect of solution concentration. Thin Solid Films, 2009, 518, 1149-1152.	0.8	67
102	Zinc oxide thin films: Characterization and potential applications. Thin Solid Films, 2010, 518, 4515-4519.	0.8	66
103	Redox Chloride Elimination Reaction: Facile Solution Route for Indiumâ€Free, Lowâ€Voltage, and Highâ€Performance Transistors. Advanced Electronic Materials, 2017, 3, 1600513.	2.6	66
104	Silicon thin film solar cells on commercial tiles. Energy and Environmental Science, 2011, 4, 4620.	15.6	65
105	Eco-friendly water-induced aluminum oxide dielectrics and their application in a hybrid metal oxide/polymer TFT. RSC Advances, 2015, 5, 86606-86613.	1.7	65
106	Printable cellulose-based electroconductive composites for sensing elements in paper electronics. Flexible and Printed Electronics, 2017, 2, 014006.	1.5	65
107	Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications. Materials, 2017, 10, 1308.	1.3	65
108	Lateral photoeffect in large area oneâ€dimensional thinâ€film positionâ€sensitive detectors based in aâ€Si:H Pâ€lâ€N devices. Review of Scientific Instruments, 1995, 66, 2927-2934.	0.6	64

#	Article	IF	Citations
109	Mapping the Electrical Properties of ZnOâ€Based Transparent Conductive Oxides Grown at Room Temperature and Improved by Controlled Postdeposition Annealing. Advanced Electronic Materials, 2016, 2, 1500287.	2.6	64
110	Role of annealing environment on the performances of large area ITO films produced by rf magnetron sputtering. Thin Solid Films, 2005, 487, 271-276.	0.8	63
111	Effect of post-heat treatment on the electrical and optical properties of ZnO:Al thin films. Thin Solid Films, 2006, 502, 219-222.	0.8	63
112	Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO ₃ Nanowires through Microstructuration. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18421-18430.	4.0	63
113	Thin film position sensitive detector based on amorphous silicon p–i–n diode. Review of Scientific Instruments, 1994, 65, 3784-3786.	0.6	62
114	Microstructure control of dual-phase inkjet-printed a-WO3/TiO2/WOX films for high-performance electrochromic applications. Journal of Materials Chemistry, 2012, 22, 13268.	6.7	62
115	Nontoxic, Ecoâ€friendly Fully Waterâ€Induced Ternary Zr–Gd–O Dielectric for Highâ€Performance Transistors and Unipolar Inverters. Advanced Electronic Materials, 2018, 4, 1800100.	2.6	62
116	UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistors. ACS Applied Materials & Date: 100-31108.	4.0	61
117	Influence of the annealing conditions on the properties of ZnO thin films. Solid State Sciences, 2001, 3, 1125-1128.	0.8	60
118	Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. Optics Express, 2014, 22, A1059.	1.7	60
119	Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells. Nano Energy, 2016, 26, 286-296.	8.2	60
120	Inkjet printed and "doctor blade―TiO2 photodetectors for DNA biosensors. Biosensors and Bioelectronics, 2010, 25, 1229-1234.	5.3	59
121	A Review on the Applications of Graphene in Mechanical Transduction. Advanced Materials, 2022, 34, e2101326.	11.1	59
122	High k dielectrics for low temperature electronics. Thin Solid Films, 2008, 516, 1544-1548.	0.8	58
123	The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology, 2014, 25, 094007.	1.3	58
124	Improving positive and negative bias illumination stress stability in parylene passivated IGZO transistors. Applied Physics Letters, 2016, 109, .	1.5	58
125	Photocatalytic TiO2 Nanorod Spheres and Arrays Compatible with Flexible Applications. Catalysts, 2017, 7, 60.	1.6	58
126	Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: Processing and application. Journal of the European Ceramic Society, 2012, 32, 4381-4391.	2.8	57

#	Article	IF	CITATIONS
127	Label-Free Nanosensing Platform for Breast Cancer Exosome Profiling. ACS Sensors, 2019, 4, 2073-2083.	4.0	57
128	Printed, Highly Stable Metal Oxide Thinâ€Film Transistors with Ultraâ€Thin Highâ€P Oxide Dielectric. Advanced Electronic Materials, 2020, 6, 1901071.	2.6	57
129	New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering. Surface and Coatings Technology, 2004, 180-181, 20-25.	2.2	56
130	Piezoresistive Eâ€6kin Sensors Produced with Laser Engraved Molds. Advanced Electronic Materials, 2018, 4, 1800182.	2.6	56
131	Paper Microfluidics and Tailored Gold Nanoparticles for Nonenzymatic, Colorimetric Multiplex Biomarker Detection. ACS Applied Materials & Interfaces, 2021, 13, 3576-3590.	4.0	56
132	Cellulose: A Contribution for the Zero eâ€Waste Challenge. Advanced Materials Technologies, 2021, 6, .	3.0	56
133	Highly Sensitive ZnO Ozone Detectors at Room Temperature. Japanese Journal of Applied Physics, 2003, 42, L435-L437.	0.8	55
134	Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature. Vacuum, 2008, 82, 1507-1511.	1.6	55
135	Structure and Morphologic Influence of WO ₃ Nanoparticles on the Electrochromic Performance of Dualâ€Phase <i>>a</i> >â€WO ₃ /WO ₃ Inkjet Printed Films. Advanced Electronic Materials, 2015, 1, 1400002.	2.6	55
136	Chitin–glucan complex production by Komagataella pastoris : Downstream optimization and product characterization. Carbohydrate Polymers, 2015, 130, 455-464.	5.1	55
137	Highly efficient nanoplasmonic SERS on cardboard packaging substrates. Nanotechnology, 2014, 25, 415202.	1.3	54
138	Paper-Based Sensing Device for Electrochemical Detection of Oxidative Stress Biomarker 8-Hydroxy-2′-deoxyguanosine (8-OHdG) in Point-of-Care. Scientific Reports, 2017, 7, 14558.	1.6	54
139	Nanostructured silicon and its application to solar cells, position sensors and thin film transistors. Philosophical Magazine, 2009, 89, 2699-2721.	0.7	53
140	Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors. Applied Physics Letters, 2016, 109, .	1.5	53
141	Boosting Electrical Performance of High-l ² Nanomultilayer Dielectrics and Electronic Devices by Combining Solution Combustion Synthesis and UV Irradiation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 40428-40437.	4.0	53
142	Laserâ€Induced Graphene Piezoresistive Sensors Synthesized Directly on Cork Insoles for Gait Analysis. Advanced Materials Technologies, 2020, 5, 2000630.	3.0	53
143	High Mobility a-IGO Films Produced at Room Temperature and Their Application in TFTs. Electrochemical and Solid-State Letters, 2010, 13, H20.	2.2	52
144	Low-temperature processed Schottky-gated field-effect transistors based on amorphous gallium-indium-zinc-oxide thin films. Applied Physics Letters, 2010, 97, .	1.5	52

#	Article	IF	Citations
145	Where science fiction meets reality? With oxide semiconductors!. Physica Status Solidi - Rapid Research Letters, 2011, 5, 336-339.	1.2	52
146	Smart optically active VO2 nanostructured layers applied in roof-type ceramic tiles for energy efficiency. Solar Energy Materials and Solar Cells, 2016, 150, 1-9.	3.0	52
147	Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 210-213.	1.7	51
148	Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. Nanotechnology, 2015, 26, 135202.	1.3	51
149	Light trapping in solar cells: simple design rules to maximize absorption. Optica, 2020, 7, 1377.	4.8	51
150	Polycrystalline intrinsic zinc oxide to be used in transparent electronic devices. Thin Solid Films, 2005, 487, 212-215.	0.8	50
151	Studies of solid-state electrochromic devices based on PEO/siliceous hybrids doped with lithium perchlorate. Electrochimica Acta, 2007, 52, 2938-2943.	2.6	50
152	Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer. Advanced Materials Interfaces, 2018, 5, 1701101.	1.9	50
153	Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. International Journal of Biological Macromolecules, 2019, 122, 1144-1151.	3.6	50
154	Influence of the deposition conditions on the gas sensitivity of zinc oxide thin films deposited by spray pyrolysis. Solid State Sciences, 2001, 3, 1129-1131.	0.8	49
155	Fully solution-induced high performance indium oxide thin film transistors with ZrO _x high-k gate dielectrics. RSC Advances, 2018, 8, 16788-16799.	1.7	49
156	Transparent thin film transistors based on indium oxide semiconductor. Journal of Non-Crystalline Solids, 2006, 352, 2311-2314.	1.5	48
157	Fieldâ€Effect Transistors on Photonic Cellulose Nanocrystal Solid Electrolyte for Circular Polarized Light Sensing. Advanced Functional Materials, 2019, 29, 1805279.	7.8	48
158	Laserâ€Induced Graphene on Paper toward Efficient Fabrication of Flexible, Planar Electrodes for Electrochemical Sensing. Advanced Materials Interfaces, 2021, 8, 2101502.	1.9	48
159	A water-induced high-k yttrium oxide dielectric for fully-solution-processed oxide thin-film transistors. Current Applied Physics, 2015, 15, S75-S81.	1.1	47
160	Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing. Journal of Physical Chemistry C, 2016, 120, 18235-18242.	1.5	47
161	Digital Microfluidics for Nucleic Acid Amplification. Sensors, 2017, 17, 1495.	2.1	47
162	Self-Rechargeable Paper Thin-Film Batteries: Performance and Applications. Journal of Display Technology, 2010, 6, 332-335.	1.3	46

#	Article	IF	Citations
163	Towards environmental friendly solution-based ZTO/AlO _{<i>x</i>} TFTs. Semiconductor Science and Technology, 2015, 30, 024007.	1.0	46
164	Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017, 2, 014001.	1.5	46
165	Tailoring IGZO Composition for Enhanced Fully Solution-Based Thin Film Transistors. Nanomaterials, 2019, 9, 1273.	1.9	46
166	Hydrogenated silicon carbon nitride films obtained by HWCVD, PA-HWCVD and PECVD techniques. Journal of Non-Crystalline Solids, 2006, 352, 1361-1366.	1.5	45
167	Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors. Journal of Materials Chemistry C, 2016, 4, 4478-4484.	2.7	45
168	Solutionâ€Processed Alkaline Lithium Oxide Dielectrics for Applications in n―and pâ€Type Thinâ€Film Transistors. Advanced Electronic Materials, 2016, 2, 1600140.	2.6	45
169	Biowaste-derived carbon black applied to polyaniline-based high-performance supercapacitor microelectrodes: Sustainable materials for renewable energy applications. Electrochimica Acta, 2019, 316, 202-218.	2.6	45
170	Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates. Vacuum, 2002, 64, 233-236.	1.6	44
171	Role of order and disorder in covalent semiconductors and ionic oxides used to produce thin film transistors. Applied Physics A: Materials Science and Processing, 2007, 89, 37-42.	1.1	44
172	Crystallization of amorphous indium zinc oxide thin films produced by radio-frequency magnetron sputtering. Thin Solid Films, 2008, 516, 1374-1376.	0.8	44
173	Nanoparticles of copper oxide on layered double hydroxides and the derived solid solutions as wide spectrum active nano-photocatalysts. Chemical Engineering Journal, 2013, 222, 60-66.	6.6	44
174	Selective floating gate nonâ€volatile paper memory transistor. Physica Status Solidi - Rapid Research Letters, 2009, 3, 308-310.	1.2	43
175	Gelatin in electrochromic devices. Optical Materials, 2010, 32, 719-722.	1.7	43
176	Lowâ€temperature sputtered mixtures of highâ€i and high bandgap dielectrics for GIZO TFTs. Journal of the Society for Information Display, 2010, 18, 762-772.	0.8	43
177	Laser-Induced Graphene-Based Platforms for Dual Biorecognition of Molecules. ACS Applied Nano Materials, 2020, 3, 2795-2803.	2.4	43
178	Metal Oxide-Based Photocatalytic Paper: A Green Alternative for Environmental Remediation. Catalysts, 2021, 11, 504.	1.6	43
179	Amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes. Applied Physics Letters, 2007, 90, 023903.	1.5	42
180	Thermochromic properties of vanadium oxide films prepared by dc reactive magnetron sputtering. Thin Solid Films, 2008, 516, 1484-1488.	0.8	42

#	Article	IF	Citations
181	Bio-microfluidic platform for gold nanoprobe based DNA detection—application to Mycobacterium tuberculosis. Biosensors and Bioelectronics, 2013, 48, 87-93.	5.3	42
182	Efficient Field Emission from Vertically Aligned Cu ₂ O _{1â€<i>)Î′</i>} (111) Nanostructure Influenced by Oxygen Vacancy. Advanced Functional Materials, 2015, 25, 947-956.	7.8	42
183	Toward Stable Solution-Processed High-Mobility p <i>-</i> >Type Thin Film Transistors Based on Halide Perovskites. ACS Nano, 2020, 14, 14790-14797.	7.3	42
184	Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells. Journal of Non-Crystalline Solids, 2006, 352, 1900-1903.	1.5	41
185	Di-ureasil xerogels containing lithium bis(trifluoromethanesulfonyl)imide for application in solid-state electrochromic devices. Electrochimica Acta, 2009, 54, 1002-1009.	2.6	41
186	Tailoring nanoscale properties of tungsten oxide for inkjet printed electrochromic devices. Nanoscale, 2015, 7, 1696-1708.	2.8	41
187	Radiationâ€Tolerant Flexible Largeâ€Area Electronics Based on Oxide Semiconductors. Advanced Electronic Materials, 2016, 2, 1500489.	2.6	41
188	Colloidal-lithographed TiO ₂ photonic nanostructures for solar cell light trapping. Journal of Materials Chemistry C, 2017, 5, 6852-6861.	2.7	41
189	Optimum Luminescent Down-Shifting Properties for High Efficiency and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 2930-2938.	2.5	41
190	High UV and Sunlight Photocatalytic Performance of Porous ZnO Nanostructures Synthesized by a Facile and Fast Microwave Hydrothermal Method. Materials, 2021, 14, 2385.	1.3	41
191	Characterization of SnO ₂ :F thin films deposited by an economic spray pyrolysis technique. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2277-2281.	0.8	40
192	3D ZnO/Ag Surface-Enhanced Raman Scattering on Disposable and Flexible Cardboard Platforms. Materials, 2017, 10, 1351.	1.3	40
193	Wax-printed paper-based device for direct electrochemical detection of 3-nitrotyrosine. Electrochimica Acta, 2018, 284, 60-68.	2.6	40
194	Paper-Based Biosensors for COVID-19: A Review of Innovative Tools for Controlling the Pandemic. ACS Omega, 2021, 6, 29268-29290.	1.6	40
195	Properties of ITO films deposited by r.fPERTE on unheated polymer substrates—dependence on oxygen partial pressure. Thin Solid Films, 2003, 427, 215-218.	0.8	39
196	The characterisation of aerosol assisted CVD conducting, photocatalytic indium doped zinc oxide films. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 10-15.	2.0	39
197	Cu ₂ O polyhedral nanowires produced by microwave irradiation. Journal of Materials Chemistry C, 2014, 2, 6097.	2.7	39
198	Laserâ€Induced Graphene from Paper by Ultraviolet Irradiation: Humidity and Temperature Sensors. Advanced Materials Technologies, 2022, 7, .	3.0	39

#	Article	IF	CITATIONS
199	Electrodeposition of polypyrrole on aluminium in aqueous tartaric solution. Electrochimica Acta, 2006, 51, 5802-5810.	2.6	38
200	Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and Bioelectronics, 2011, 26, 2742-2745.	5. 3	38
201	Memristors Using Solution-Based IGZO Nanoparticles. ACS Omega, 2017, 2, 8366-8372.	1.6	38
202	Paper-Based SERS Platform for One-Step Screening of Tetracycline in Milk. Scientific Reports, 2019, 9, 17922.	1.6	38
203	Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays. Journal of Materials Chemistry, 2010, 20, 723-730.	6.7	37
204	Portable optoelectronic biosensing platform for identification of mycobacteria from the Mycobacterium tuberculosis complex. Biosensors and Bioelectronics, 2011, 26, 2012-2017.	5. 3	37
205	lon sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification. Biosensors and Bioelectronics, 2014, 52, 50-55.	5.3	37
206	8-hydroxy-2′-deoxyguanosine (8-OHdG) biomarker detection down to picoMolar level on a plastic antibody film. Biosensors and Bioelectronics, 2016, 86, 225-234.	5. 3	37
207	Photocatalytic behavior of TiO 2 films synthesized by microwave irradiation. Catalysis Today, 2016, 278, 262-270.	2.2	37
208	Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flexible and Printed Electronics, 2018, 3, 044002.	1.5	37
209	Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 89-93.	1.7	36
210	UV and ozone influence on the conductivity of ZnO thin films. Journal of Non-Crystalline Solids, 2006, 352, 1444-1447.	1.5	36
211	Electrical, structural and optical properties of fluorine-doped zinc oxide thin films: Effect of the solution aging time. Thin Solid Films, 2009, 518, 1279-1282.	0.8	36
212	Visualization of nanocrystalline CuO in the grain boundaries of Cu2O thin films and effect on band bending and film resistivity. APL Materials, 2018 , 6 , $.$	2.2	36
213	Spray deposited molybdenum doped indium oxide thin films with high near infrared transparency and carrier mobility. Applied Physics Letters, 2009, 94, 212101.	1.5	35
214	Solid-state paper batteries for controlling paper transistors. Electrochimica Acta, 2011, 56, 1099-1105.	2.6	35
215	Solvothermal Synthesis of Gallium–Indium-Zinc-Oxide Nanoparticles for Electrolyte-Gated Transistors. ACS Applied Materials & Discrete Samp; Interfaces, 2015, 7, 638-646.	4.0	35
216	Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture. IScience, 2018, 3, 238-254.	1.9	35

#	Article	IF	Citations
217	Transduction Mechanisms, Micro-Structuring Techniques, and Applications of Electronic Skin Pressure Sensors: A Review of Recent Advances. Sensors, 2020, 20, 4407.	2.1	35
218	Nobleâ€Metalâ€Free Memristive Devices Based on IGZO for Neuromorphic Applications. Advanced Electronic Materials, 2020, 6, 2000242.	2.6	35
219	Polycrystalline silicon obtained by metal induced crystallization using different metals. Thin Solid Films, 2004, 451-452, 334-339.	0.8	34
220	Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers. Journal of Non-Crystalline Solids, 2006, 352, 1972-1975.	1.5	34
221	p-Type <formula formulatype="inline"><tex Notation="TeX"> $\{hbox\{Cu\}\}_{x}\{hbox\{O\}\}$ </tex> </formula> Thin-Film Transistors Produced by Thermal Oxidation. Journal of Display Technology, 2013, 9, 735-740.	1.3	34
222	Analog Circuits With High-Gain Topologies Using a-GIZO TFTs on Glass. Journal of Display Technology, 2015, 11, 547-553.	1.3	34
223	Influence of Channel Length Scaling on InGaZnO TFTs Characteristics: Unity Current-Gain Cutoff Frequency, Intrinsic Voltage-Gain, and On-Resistance. Journal of Display Technology, 2016, 12, 515-518.	1.3	34
224	A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection. Sensors, 2017, 17, 2616.	2.1	34
225	Design of wave-optical structured substrates for ultra-thin perovskite solar cells. Applied Materials Today, 2020, 20, 100720.	2.3	34
226	The effects of La on the dielectric properties of lead iron tungstate Pb(Fe2/3W1/3)O3 relaxor ceramics. Journal of the European Ceramic Society, 2000, 20, 1035-1041.	2.8	33
227	Flexible a-Si:H Position-Sensitive Detectors. Proceedings of the IEEE, 2005, 93, 1281-1286.	16.4	33
228	Optical properties of cobalt oxide films by a dipping sol–gel process. Journal of Non-Crystalline Solids, 2006, 352, 1479-1485.	1.5	33
229	Sol–gel-derived potassium-based di-ureasils for "smart windows― Journal of Materials Chemistry, 2007, 17, 4239.	6.7	33
230	Fully Printed Zinc Oxide Electrolyte-Gated Transistors on Paper. Nanomaterials, 2019, 9, 169.	1.9	33
231	The role of source and drain material in the performance of GIZO based thinâ€film transistors. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1905-1909.	0.8	32
232	Synthesis, design, and morphology of metal oxide nanostructures., 2019,, 21-57.		32
233	Paper-based (bio)sensor for label-free detection of 3-nitrotyrosine in human urine samples using molecular imprinted polymer. Sensing and Bio-Sensing Research, 2020, 28, 100333.	2.2	32
234	Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: Synthesis, characterization and in vitro bioactivity. International Journal of Biological Macromolecules, 2020, 163, 959-969.	3.6	32

#	Article	IF	CITATIONS
235	Laser-induced graphene from paper for non-enzymatic uric acid electrochemical sensing in urine. Carbon, 2022, 197, 253-263.	5.4	32
236	Large Area Deposition of Polymorphous Silicon by Plasma Enhanced Chemical Vapor Deposition at 27.12 MHz and 13.56 MHz. Japanese Journal of Applied Physics, 2003, 42, 4935-4942.	0.8	31
237	Highly conductive p-type nanocrystalline silicon films deposited by RF-PECVD using silane and trimethylboron mixtures at high pressure. Vacuum, 2009, 83, 1253-1256.	1.6	31
238	Study and Characterization of a Novel Polymer Electrolyte Based on Agar Doped with Magnesium Triflate. Molecular Crystals and Liquid Crystals, 2013, 570, 1-11.	0.4	31
239	Flexible and Transparent WO ₃ Transistor with Electrical and Optical Modulation. Advanced Electronic Materials, 2015, 1, 1500030.	2.6	31
240	Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas chlororaphis subsp. aurantiaca: Cultivation on fruit pulp waste and polymer characterization. International Journal of Biological Macromolecules, 2021, 167, 85-92.	3.6	31
241	Influence of substrate temperature on N-doped ZnO films deposited by RF magnetron sputtering. Thin Solid Films, 2007, 515, 8785-8788.	0.8	30
242	Role of Room Temperature Sputtered High Conductive and High Transparent Indium Zinc Oxide Film Contacts on the Performance of Orange, Green, and Blue Organic Light Emitting Diodes. Plasma Processes and Polymers, 2011, 8, 340-345.	1.6	30
243	Inkjet printed highly porous TiO 2 films for improved electrical properties of photoanode. Journal of Colloid and Interface Science, 2016, 465, 208-214.	5.0	30
244	Passive radiofrequency x-ray dosimeter tag based on flexible radiation-sensitive oxide field-effect transistor. Science Advances, 2018, 4, eaat1825.	4.7	30
245	Influence of time, light and temperature on the electrical properties of zinc oxide TFTs. Superlattices and Microstructures, 2006, 39, 319-327.	1.4	29
246	Electrochromic devices incorporating biohybrid electrolytes doped with a lithium salt, an ionic liquid or a mixture of both. Electrochimica Acta, 2015, 161, 226-235.	2.6	29
247	Highly conductive and highly transparent n-type microcrystalline silicon thin films. Thin Solid Films, 1997, 303, 47-52.	0.8	28
248	Study of nanostructured/amorphous silicon solar cell by impedance spectroscopy technique. Journal of Non-Crystalline Solids, 2006, 352, 1880-1883.	1.5	28
249	Optical and structural analysis of porous silicon coated with GZO films using rf magnetron sputtering. Thin Solid Films, 2007, 515, 8664-8669.	0.8	28
250	Enigmatic reticulated filaments in subsurface granite. Environmental Microbiology Reports, 2012, 4, 596-603.	1.0	28
251	p-Type ${hbox{Cu}}_{x}{hbox{O}}$ Films Deposited at Room Temperature for Thin-Film Transistors. Journal of Display Technology, 2012, 8, 41-47.	1.3	28
252	Solution based zinc tin oxide TFTs: the dual role of the organic solvent. Journal Physics D: Applied Physics, 2017, 50, 065106.	1,3	28

#	Article	IF	CITATIONS
253	Role of Structure and Composition on the Performances of P-Type Tin Oxide Thin-Film Transistors Processed at Low-Temperatures. Nanomaterials, 2019, 9, 320.	1.9	28
254	Paper-Based In-Situ Gold Nanoparticle Synthesis for Colorimetric, Non-Enzymatic Glucose Level Determination. Nanomaterials, 2020, 10, 2027.	1.9	28
255	New insights on large area flexible position sensitive detectors. Journal of Non-Crystalline Solids, 2002, 299-302, 1272-1276.	1.5	27
256	Low temperature processed hafnium oxide: Structural and electrical properties. Materials Science in Semiconductor Processing, 2006, 9, 1125-1132.	1.9	27
257	Effect of annealing on the properties of N-doped ZnO films deposited by RF magnetron sputtering. Applied Surface Science, 2008, 254, 7178-7182.	3.1	27
258	Oxide semiconductors: Order within the disorder. Philosophical Magazine, 2009, 89, 2741-2758.	0.7	27
259	Sintering Behavior of Nano―and Microâ€Sized <scp><scp>ZnO</scp></scp> Powder Targets for rf Magnetron Sputtering Applications. Journal of the American Ceramic Society, 2012, 95, 204-210.	1.9	27
260	Study of the optical, electrical and corrosion resistance properties of AZO layers deposited by DC pulsed magnetron sputtering. Surface and Coatings Technology, 2015, 271, 141-147.	2.2	27
261	Solar cells for self-sustainable intelligent packaging. Journal of Materials Chemistry A, 2015, 3, 13226-13236.	5.2	27
262	Sustainable Dual-Mode Smart Windows for Energy-Efficient Buildings. ACS Applied Energy Materials, 2019, 2, 1951-1960.	2.5	27
263	Paper-Based Platform with an In Situ Molecularly Imprinted Polymer for β-Amyloid. ACS Omega, 2020, 5, 12057-12066.	1.6	27
264	Tunneling in vertical μcSi/aSixCyOz:H/μcSi heterostructures. Journal of Non-Crystalline Solids, 1989, 11 120-122.	¹ 5. ₅	26
265	Influence of the reactive N2 gas flow on the properties of rf-sputtered ZnO thin films. Thin Solid Films, 2007, 515, 8780-8784.	0.8	26
266	The effects of ZnO coating on the photoluminescence properties of porous silicon for the advanced optoelectronic devices. Journal of Non-Crystalline Solids, 2008, 354, 2181-2185.	1.5	26
267	RF sputtered wide work function indium molybdenum oxide thin films for solar cell applications. Solar Energy, 2009, 83, 726-731.	2.9	26
268	Influence of postâ€deposition annealing on electrical and optical properties of ZnOâ€based TCOs deposited at room temperature. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2317-2328.	0.8	26
269	Low-temperature spray-coating of high-performing ZnO:Al films for transparent electronics. Journal of Analytical and Applied Pyrolysis, 2017, 127, 299-308.	2.6	26
270	Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells. Solar Energy, 2018, 174, 786-792.	2.9	26

#	Article	IF	CITATIONS
271	Sol–Gel Processed p-Type CuAlO ₂ Semiconductor Thin Films and the Integration in Transistors. IEEE Transactions on Electron Devices, 2019, 66, 1458-1463.	1.6	26
272	Lightwave trapping in thin film solar cells with improved photonic-structured front contacts. Journal of Materials Chemistry C, 2019, 7, 6456-6464.	2.7	26
273	E-Skin Bimodal Sensors for Robotics and Prosthesis Using PDMS Molds Engraved by Laser. Sensors, 2019, 19, 899.	2.1	26
274	Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks. APL Materials, 2022, 10 , .	2.2	26
275	Contact Effects in Amorphous InGaZnO Thin Film Transistors. Journal of Display Technology, 2014, 10, 956-961.	1.3	25
276	Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules, 2017, 104, 1099-1106.	3.6	25
277	Planar Dualâ€Gate Paper/Oxide Field Effect Transistors as Universal Logic Gates. Advanced Electronic Materials, 2018, 4, 1800423.	2.6	25
278	Shape Effect of Zinc-Tin Oxide Nanostructures on Photodegradation of Methylene Blue and Rhodamine B under UV and Visible Light. ACS Applied Nano Materials, 2021, 4, 1149-1161.	2.4	25
279	Electron transport in single and multicomponent n-type oxide semiconductors. Thin Solid Films, 2008, 516, 1322-1325.	0.8	24
280	Fabrication and characterization of hybrid solar cells based on copper phthalocyanine/porous silicon. Journal of Non-Crystalline Solids, 2008, 354, 2892-2896.	1.5	24
281	Li ⁺ - and Eu ³⁺ -Doped Poly(ε-caprolactone)/Siloxane Biohybrid Electrolytes for Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2953-2965.	4.0	24
282	Environmental, Optical, and Electrical Stability Study of Solution-Processed Zinc–Tin–Oxide Thin-Film Transistors. Journal of Display Technology, 2011, 7, 640-643.	1.3	24
283	Current transport mechanism at metal–semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillars. Nanoscale, 2013, 5, 11699.	2.8	24
284	Statistical Mixture Design and Multivariate Analysis of Inkjet Printed <i>>a</i> -WO ₃ /TiO ₂ /WO _{<i>X</i>} Electrochromic Films. ACS Combinatorial Science, 2014, 16, 5-16.	3.8	24
285	A compact model and direct parameters extraction techniques For amorphous gallium-indium-zinc-oxide thin film transistors. Solid-State Electronics, 2016, 126, 81-86.	0.8	24
286	Solid State Electrochemical WO ₃ Transistors with High Current Modulation. Advanced Electronic Materials, 2016, 2, 1500414.	2.6	24
287	Handwritten Oxide Electronics on Paper. Advanced Materials Technologies, 2017, 2, 1700009.	3.0	24
288	Mapping the space charge carrier dynamics in plasmon-based perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 19811-19819.	5. 2	24

#	Article	IF	Citations
289	Tailoring Upconversion and Morphology of Yb/Eu Doped Y2O3 Nanostructures by Acid Composition Mediation. Nanomaterials, 2019, 9, 234.	1.9	24
290	Dark currentâ€voltage characteristics of transverse asymmetric hydrogenated amorphous silicon diodes. Journal of Applied Physics, 1995, 78, 3481-3487.	1.1	23
291	Influence of the Strain on the Electrical Resistance of Zinc Oxide Doped Thin Film Deposited on Polymer Substrates. Advanced Engineering Materials, 2002, 4, 610-612.	1.6	23
292	Effect of thickness on the properties of ITO thin films deposited by RF-PERTE on unheated, flexible, transparent substrates. Surface and Coatings Technology, 2002, 151-152, 252-256.	2.2	23
293	ZnO/SiO ₂ nanocomposite thin films by sol–gel method. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 2075-2079.	0.8	23
294	High mobility and visible–near infrared transparent titanium doped indium oxide thin films produced by spray pyrolysis. Thin Solid Films, 2012, 524, 268-271.	0.8	23
295	One-step synthesis of ZnO decorated CNT buckypaper composites and their optical and electrical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 195, 38-44.	1.7	23
296	Bias Stress and Temperature Impact on InGaZnO TFTs and Circuits. Materials, 2017, 10, 680.	1.3	23
297	Tuning the Electrical Properties of Cellulose Nanocrystals through Laser-Induced Graphitization for UV Photodetectors. ACS Applied Nano Materials, 2021, 4, 8262-8272.	2.4	23
298	New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide. Sensors and Actuators A: Physical, 1998, 67, 68-71.	2.0	22
299	Group 4 Metallocene Catalysts with Hapto-Flexible Cyclopentadienyl-Aryl Ligand. Macromolecular Rapid Communications, 2001, 22, 339-344.	2.0	22
300	Polycrystalline silicon obtained by gold metal induced crystallization. Journal of Non-Crystalline Solids, 2004, 338-340, 178-182.	1.5	22
301	High near-infrared transparency and carrier mobility of Mo doped In2O3 thin films for optoelectronics applications. Journal of Applied Physics, 2009, 106, .	1.1	22
302	Room-Temperature Cosputtered HfO[sub 2]â€"Al[sub 2]O[sub 3] Multicomponent Gate Dielectrics. Electrochemical and Solid-State Letters, 2009, 12, G65.	2.2	22
303	Gelatin _{<i>n</i>} Zn(CF ₃ SO ₃) ₂ Polymer Electrolytes for Electrochromic Devices. Electroanalysis, 2013, 25, 1483-1490.	1.5	22
304	Comparative study of transparent rectifying contacts on semiconducting oxide single crystals and amorphous thin films. Journal of Applied Physics, 2013, 113, .	1.1	22
305	Transparent Current Mirrors With a-GIZO TFTs: Neural Modeling, Simulation and Fabrication. Journal of Display Technology, 2013, 9, 1001-1006.	1.3	22
306	Seed-Layer Free Zinc Tin Oxide Tailored Nanostructures for Nanoelectronic Applications: Effect of Chemical Parameters. ACS Applied Nano Materials, 2018, 1, 3986-3997.	2.4	22

#	Article	IF	CITATIONS
307	Multi-Level Cell Properties of a Bilayer Cu2O/Al2O3 Resistive Switching Device. Nanomaterials, 2019, 9, 289.	1.9	22
308	Threeâ€Mode Modulation Electrochromic Device with High Energy Efficiency for Windows of Buildings Located in Continental Climatic Regions. Advanced Sustainable Systems, 2019, 3, 1800115.	2.7	22
309	Laser induced ultrafast combustion synthesis of solution-based AlO _x for thin film transistors. Journal of Materials Chemistry C, 2020, 8, 6176-6184.	2.7	22
310	Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz. Thin Solid Films, 2005, 487, 170-173.	0.8	21
311	High-mobility molybdenum doped indium oxide thin films prepared by spray pyrolysis technique. Materials Letters, 2008, 62, 3217-3219.	1.3	21
312	Real-time monitoring of PCR amplification of proto-oncogene c-MYC using a Ta2O5 electrolyte–insulator–semiconductor sensor. Biosensors and Bioelectronics, 2011, 28, 44-49.	5.3	21
313	Al-doped ZnO nanostructured powders by emulsion detonation synthesis – Improving materials for high quality sputtering targets manufacturing. Journal of the European Ceramic Society, 2014, 34, 2325-2338.	2.8	21
314	Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress. AIP Advances, 2016, 6, .	0.6	21
315	Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance. ACS Combinatorial Science, 2017, 19, 113-120.	3.8	21
316	Multifunctional microfluidic chip for optical nanoprobe based RNA detection – application to Chronic Myeloid Leukemia. Scientific Reports, 2018, 8, 381.	1.6	21
317	Critical role of a double-layer configuration in solution-based unipolar resistive switching memories. Nanotechnology, 2018, 29, 345206.	1.3	21
318	TiO2 Nanostructured Films for Electrochromic Paper Based-Devices. Applied Sciences (Switzerland), 2020, 10, 1200.	1.3	21
319	Colloidal Lithography for Photovoltaics: An Attractive Route for Light Management. Nanomaterials, 2021, 11, 1665.	1.9	21
320	Large Area Position Sensitive Detector Based on Amorphous Silicon Technology. Materials Research Society Symposia Proceedings, 1993, 297, 981.	0.1	20
321	Role of the resistive layer on the performances of 2D a-Si:H thin film position sensitive detectors. Thin Solid Films, 1999, 337, 158-162.	0.8	20
322	Characterization of silicon carbide thin films prepared by VHF-PECVD technology. Journal of Non-Crystalline Solids, 2004, 338-340, 530-533.	1.5	20
323	Sol–gel cobalt oxide–silica nanocomposite thin films for gas sensing applications. Thin Solid Films, 2008, 516, 1499-1502.	0.8	20
324	Stress Induced Mechano-electrical Writing-Reading of Polymer Film Powered by Contact Electrification Mechanism. Scientific Reports, 2016, 6, 19514.	1.6	20

#	Article	lF	Citations
325	Highly conductive grain boundaries in copper oxide thin films. Journal of Applied Physics, 2016, 119, .	1.1	20
326	InGaZnO TFT behavioral model for IC design. Analog Integrated Circuits and Signal Processing, 2016, 87, 73-80.	0.9	20
327	Oxide TFT Rectifiers on Flexible Substrates Operating at NFC Frequency Range. IEEE Journal of the Electron Devices Society, 2019, 7, 329-334.	1.2	20
328	Ultrafast Low-Temperature Crystallization of Solar Cell Graded Formamidinium-Cesium Mixed-Cation Lead Mixed-Halide Perovskites Using a Reproducible Microwave-Based Process. ACS Applied Energy Materials, 2019, 2, 1844-1853.	2.5	20
329	Application of ultrasonic sprayed zirconium oxide dielectric in zinc tin oxide-based thin film transistor. Journal of Materials Chemistry C, 2020, 8, 3730-3739.	2.7	20
330	Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors. Diamond and Related Materials, 2022, 123, 108855.	1.8	20
331	Effect of rf power on the properties of ITO thin films deposited by plasma enhanced reactive thermal evaporation on unheated polymer substrates. Journal of Non-Crystalline Solids, 2002, 299-302, 1208-1212.	1.5	19
332	Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytes. Solid State Ionics, 2013, 242, 26-32.	1.3	19
333	Low-Voltage High-Stability InZnO Thin-Film Transistor Using Ultra-Thin Solution-Processed ZrO $_{x}$	1.3	19
334	Development of multicore hybrid particles for drug delivery through the precipitation of CO2 saturated emulsions. International Journal of Pharmaceutics, 2015, 478, 9-18.	2.6	19
335	Design and Simple Assembly of Gold Nanostar Bioconjugates for Surface-Enhanced Raman Spectroscopy Immunoassays. Nanomaterials, 2019, 9, 1561.	1.9	19
336	Human-motion interactive energy harvester based on polyaniline functionalized textile fibers following metal/polymer mechano-responsive charge transfer mechanism. Nano Energy, 2019, 60, 794-801.	8.2	19
337	Fast Prototyping Microfluidics: Integrating Droplet Digital Lamp for Absolute Quantification of Cancer Biomarkers. Sensors, 2020, 20, 1624.	2.1	19
338	Selfâ€Cleaned Photonicâ€Enhanced Solar Cells with Nanostructured Paryleneâ€C. Advanced Materials Interfaces, 2020, 7, 2000264.	1.9	19
339	Fast and Low-Cost Synthesis of MoS2 Nanostructures on Paper Substrates for Near-Infrared Photodetectors. Applied Sciences (Switzerland), 2021, 11, 1234.	1.3	19
340	Performances of an optical ruler based on one-dimensional hydrogenated amorphous Si position-sensitive detectors produced using different metal contacts. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 765-774.	0.6	18
341	Sputtered multicomponent amorphous dielectrics for transparent electronics. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2149-2154.	0.8	18
342	K+-doped poly($\hat{l}\mu$ -caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. Solid State lonics, 2011, 204-205, 129-139.	1.3	18

#	Article	lF	Citations
343	Green Li+- and Er3+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for smart electrochromic windows. Solar Energy Materials and Solar Cells, 2014, 123, 203-210.	3.0	18
344	Exploring the potential of laser assisted flow deposition grown ZnO for photovoltaic applications. Materials Chemistry and Physics, 2016, 177, 322-329.	2.0	18
345	Growth Mechanism of Seed-Layer Free ZnSnO3 Nanowires: Effect of Physical Parameters. Nanomaterials, 2019, 9, 1002.	1.9	18
346	All-Thin-Film Perovskite/C–Si Four-Terminal Tandems: Interlayer and Intermediate Contacts Optimization. ACS Applied Energy Materials, 2019, 2, 3979-3985.	2.5	18
347	Reusable and highly sensitive SERS immunoassay utilizing gold nanostars and a cellulose hydrogel-based platform. Journal of Materials Chemistry B, 2021, 9, 7516-7529.	2.9	18
348	Role of the gas temperature and power to gas flow ratio on powder and voids formation in films grown by PECVD technique. Vacuum, 2000, 56, 25-30.	1.6	17
349	Flexible large area thin film position sensitive detectors. Sensors and Actuators A: Physical, 2000, 86, 182-186.	2.0	17
350	New ultra-light flexible large area thin film position sensitive detector based on amorphous silicon. Journal of Non-Crystalline Solids, 2000, 266-269, 1213-1217.	1.5	17
351	Effect of different dopants on the properties of ZnO thin films. Solid State Sciences, 2001, 3, 1211-1213.	0.8	17
352	Silicon thin films prepared in the transition region and their use in solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 3001-3008.	3.0	17
353	Application of hybrid materials in solid-state electrochromic devices. Optical Materials, 2009, 31, 1467-1471.	1.7	17
354	Electronic structure of amorphous ZnO films. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1476-1480.	0.8	17
355	One nanoprobe, two pathogens: gold nanoprobes multiplexing for point-of-care. Journal of Nanobiotechnology, 2015, 13, 48.	4.2	17
356	Optoelectronic Devices from Bacterial NanoCellulose. , 2016, , 179-197.		17
357	Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor. Applied Surface Science, 2016, 379, 270-276.	3.1	17
358	Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cells. Solar Energy, 2020, 196, 92-98.	2.9	17
359	Oxygen Plasma Treated-Electrospun Polyhydroxyalkanoate Scaffolds for Hydrophilicity Improvement and Cell Adhesion. Polymers, 2021, 13, 1056.	2.0	17
360	Design and synthesis of low temperature printed metal oxide memristors. Journal of Materials Chemistry C, 2021, 9, 3911-3918.	2.7	17

#	Article	IF	Citations
361	Role of the collecting resistive layer on the static characteristics of a 1D aâ€i:H thin film position sensitive detector. Review of Scientific Instruments, 1996, 67, 2702-2707.	0.6	16
362	Silicon carbide alloys produced by hot wire, hot wire plasma-assisted and plasma-enhanced CVD techniques. Applied Surface Science, 2001, 184, 8-19.	3.1	16
363	a-Si:H interface optimisation for thin film position sensitive detectors produced on polymeric substrates. Journal of Non-Crystalline Solids, 2002, 299-302, 1289-1294.	1.5	16
364	The diphasic nc-Si/a-Si:H thin film with improved medium-range order. Journal of Non-Crystalline Solids, 2004, 338-340, 188-191.	1.5	16
365	Linearity and sensitivity of MIS position sensitive detectors. Journal of Materials Science, 2005, 40, 1377-1381.	1.7	16
366	Annealing properties of ZnO films grown using diethyl zinc and tertiary butanol. Journal of Physics Condensed Matter, 2005, 17, 1719-1724.	0.7	16
367	Solid-state electrochromic devices based on poly(trimethylene carbonate) and lithium salts. Thin Solid Films, 2008, 516, 1480-1483.	0.8	16
368	Investigation of O7+ swift heavy ion irradiation on molybdenum doped indium oxide thin films. Radiation Physics and Chemistry, 2012, 81, 589-593.	1.4	16
369	Extended-Gate ISFETs Based on Sputtered Amorphous Oxides. Journal of Display Technology, 2013, 9, 729-734.	1.3	16
370	Observation of Space Charge Dynamics Inside an All Oxide Based Solar Cell. ACS Nano, 2016, 10, 6139-6146.	7.3	16
371	Luminescent Electrochromic Devices for Smart Windows of Energy-Efficient Buildings. Energies, 2018, 11, 3513.	1.6	16
372	Sustainable Fully Printed UV Sensors on Cork Using Zinc Oxide/Ethylcellulose Inks. Micromachines, 2019, 10, 601.	1.4	16
373	Touchâ€Interactive Flexible Sustainable Energy Harvester and Selfâ€Powered Smart Card. Advanced Functional Materials, 2020, 30, 1908994.	7.8	16
374	Ionic Conductive Cellulose Mats by Solution Blow Spinning as Substrate and a Dielectric Interstrate Layer for Flexible Electronics. ACS Applied Materials & Interfaces, 2021, 13, 26237-26246.	4.0	16
375	Molecular Imprinting on Nanozymes for Sensing Applications. Biosensors, 2021, 11, 152.	2.3	16
376	Properties of a-Si:H TFTs using silicon carbonitride as dielectric. Journal of Non-Crystalline Solids, 2004, 338-340, 797-801.	1.5	15
377	Polymer light-emitting diodes with amorphous indium-zinc oxide anodes deposited at room temperature. Synthetic Metals, 2009, 159, 1112-1115.	2.1	15
378	Study of electrochromic devices with nanocomposites polymethacrylate hydroxyethylene resin based electrolyte. Polymers for Advanced Technologies, 2012, 23, 791-795.	1.6	15

#	Article	IF	CITATIONS
379	Nanocrystalline thin film silicon solar cells: A deeper look into p/i interface formation. Thin Solid Films, 2015, 591, 25-31.	0.8	15
380	The influence of target erosion grade in the optoelectronic properties of AZO coatings growth by magnetron sputtering. Applied Surface Science, 2016, 380, 218-222.	3.1	15
381	High performance electronic devices based on nanofibers <i>via</i> a crosslinking welding process. Nanoscale, 2018, 10, 19427-19434.	2.8	15
382	Colloidal-structured metallic micro-grids: High performance transparent electrodes in the red and infrared range. Solar Energy Materials and Solar Cells, 2019, 197, 7-12.	3.0	15
383	2D Resistive Switching Based on Amorphous Zinc–Tin Oxide Schottky Diodes. Advanced Electronic Materials, 2020, 6, 1900958.	2.6	15
384	High-performance wide bandgap perovskite solar cells fabricated in ambient high-humidity conditions. Materials Advances, 2021, 2, 6344-6355.	2.6	15
385	Emergent solution based IGZO memristor towards neuromorphic applications. Journal of Materials Chemistry C, 2022, 10, 1991-1998.	2.7	15
386	Transport in νc-Six:Cy:Oz:H films prepared by a TCDDC system. Journal of Non-Crystalline Solids, 1989, 114, 486-488.	1.5	14
387	A new high ultraviolet sensitivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis. Semiconductor Science and Technology, 1998, 13, 102-107.	1.0	14
388	Production and characterization of large area flexible thin film position sensitive detectors. Thin Solid Films, 2001, 383, 310-313.	0.8	14
389	Thin film position sensitive detectors based on pin amorphous silicon carbide structures. Applied Surface Science, 2001, 184, 443-447.	3.1	14
390	Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors. Thin Solid Films, 2005, 487, 102-106.	0.8	14
391	Some studies on highly transparent wide band gap indium molybdenum oxide thin films rf sputtered at room temperature. Thin Solid Films, 2008, 516, 1359-1364.	0.8	14
392	Thin-Film Transistors Based on Indium Molybdenum Oxide Semiconductor Layers Sputtered at Room Temperature. IEEE Electron Device Letters, 2011, 32, 1391-1393.	2.2	14
393	Multifunctional zinc oxide nanostructures for a new generation of devices. Materials Chemistry and Physics, 2012, 132, 339-346.	2.0	14
394	Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length. RSC Advances, 2014, 4, 56013-56025.	1.7	14
395	Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 18057-18065.	4.0	14
396	Enhanced electrical and photocatalytic properties of porous TiO2 thin films decorated with Fe2O3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 20753-20773.	1.1	14

#	Article	lF	Citations
397	Millimeter-sized few-layer suspended graphene membranes. Applied Materials Today, 2020, 21, 100879.	2.3	14
398	ZnO nanostructures grown on ITO coated glass substrate by hybrid microwave-assisted hydrothermal method. Optik, 2020, 208, 164372.	1.4	14
399	Transparent and Flexible Electrocorticography Electrode Arrays Based on Silver Nanowire Networks for Neural Recordings. ACS Applied Nano Materials, 2021, 4, 5737-5747.	2.4	14
400	Healable Cellulose Iontronic Hydrogel Stickers for Sustainable Electronics on Paper. Advanced Electronic Materials, 2021, 7, 2001166.	2.6	14
401	Effects of U.V. light on the transport properties of a-Si : H films during their growth. Journal of Non-Crystalline Solids, 1987, 97-98, 1399-1402.	1.5	13
402	High-detection resolution presented by large-area thin-film position-sensitive detectors. , 1995, 2397, 259.		13
403	Wide Band Gap Microcrystalline Silicon Thin Films. Solid State Phenomena, 1995, 44-46, 299-346.	0.3	13
404	Polymorphous Silicon Films Deposited at 27.12 MHz. Chemical Vapor Deposition, 2003, 9, 333-337.	1.4	13
405	Amorphous silicon position sensitive detectors applied to micropositioning. Journal of Non-Crystalline Solids, 2006, 352, 1792-1796.	1.5	13
406	Nanostructure characterization of high k materials by spectroscopic ellipsometry. Applied Surface Science, 2006, 253, 339-343.	3.1	13
407	Electrodeposition of WO3 Nanoparticles for Sensing Applications. , 0, , .		13
408	Room Temperature Synthesis of Cu2O Nanospheres: Optical Properties and Thermal Behavior. Microscopy and Microanalysis, 2015, 21, 108-119.	0.2	13
409	A Low-Power Analog Adder and Driver Using a-IGZO TFTs. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 1118-1125.	3.5	13
410	A statistics modeling approach for the optimization of thin film photovoltaic devices. Solar Energy, 2017, 144, 232-243.	2.9	13
411	Draw Spinning of Waferâ€Scale Oxide Fibers for Electronic Devices. Advanced Electronic Materials, 2018, 4, 1700644.	2.6	13
412	Ionically Modified Cellulose Nanocrystal Self-Assembled Films with a Mesoporous Twisted Superstructure: Polarizability and Application in Ion-Gated Transistors. ACS Applied Electronic Materials, 2020, 2, 426-436.	2.0	13
413	Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification. Nanomaterials, 2022, 12, 1005.	1.9	13
414	Role of ion bombardment on the properties of a-Si:H films. Vacuum, 2001, 60, 247-254.	1.6	12

#	Article	IF	Citations
415	Influence of the deposition conditions on the properties of titanium oxide produced by r.f. magnetron sputtering. Materials Science in Semiconductor Processing, 2004, 7, 243-247.	1.9	12
416	Porous a/nc-Si:H films produced by HW-CVD as ethanol vapour detector and primary fuel cell. Sensors and Actuators B: Chemical, 2004, 103, 344-349.	4.0	12
417	Study of nanostructured silicon by hydrogen evolution and its application in p–i–n solar cells. Journal of Non-Crystalline Solids, 2006, 352, 1945-1948.	1.5	12
418	Preliminary studies on molybdenum-doped indium oxide thin films deposited by radio-frequency magnetron sputtering at room temperature. Thin Solid Films, 2007, 515, 5512-5518.	0.8	12
419	Effect of Li ³⁺ heavy ion irradiation on the Mo doped In ₂ O ₃ thin films prepared by spray pyrolysis technique. Journal Physics D: Applied Physics, 2011, 44, 085404.	1.3	12
420	P-type oxide-based thin film transistors produced at low temperatures. , 2012, , .		12
421	Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)3. Science and Technology of Advanced Materials, 2012, 13, 045004.	2.8	12
422	InGaZnO Thin-Film-Transistor-Based Four-Quadrant High-Gain Analog Multiplier on Glass. IEEE Electron Device Letters, 2016, 37, 419-421.	2.2	12
423	Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform. Biosensors and Bioelectronics, 2017, 91, 788-795.	5.3	12
424	The effect of three luminescent ionic liquids on corroded glass surfaces $\hat{a} \in \text{``} A$ first step into stained-glass cleaning. Corrosion Science, 2017, 118, 109-117.	3.0	12
425	Solution Combustion Synthesis of Transparent Conducting Thin Films for Sustainable Photovoltaic Applications. Sustainability, 2020, 12, 10423.	1.6	12
426	Industrial Waste Residue Converted into Value-Added ZnO for Optoelectronic Applications. ACS Applied Electronic Materials, 2020, 2, 1960-1969.	2.0	12
427	Ultrafast Microwave Synthesis of WO ₃ Nanostructured Films for Solar Photocatalysis. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100196.	1.2	12
428	New materials for large-area position-sensitive detectors. Sensors and Actuators A: Physical, 1998, 68, 244-248.	2.0	11
429	Role of the deposition conditions on the properties presented by nanocrystallite silicon films produced by hot wire. Journal of Non-Crystalline Solids, 1998, 227-230, 901-905.	1.5	11
430	Microcrystalline thin metal oxide films for optoelectronic applications. Journal of Non-Crystalline Solids, 1998, 227-230, 1092-1095.	1.5	11
431	Morphology and structure of nanocrystalline p-doped silicon films produced by hot wire technique. Vacuum, 2002, 64, 237-243.	1.6	11
432	Surface modification of a new flexible substrate based on hydroxypropylcellulose for optoelectronic applications. Thin Solid Films, 2003, 442, 127-131.	0.8	11

#	Article	IF	Citations
433	Role of the thickness on the electrical and optical performances of undoped polycrystalline zinc oxide films used as UV detectors. Journal of Non-Crystalline Solids, 2006, 352, 1448-1452.	1.5	11
434	Spectroscopic ellipsometry study of Coâ€doped TiO ₂ films. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 880-883.	0.8	11
435	Structural and optical properties of nitrogen doped ZnO films. Vacuum, 2009, 83, 1274-1278.	1.6	11
436	Poly (É>-caprolactone)/siloxane biohybrids with application in "smart windows― Synthetic Metals, 2012, 161, 2682-2687.	2.1	11
437	Basic analog circuits with a-GIZO thin-film transistors: Modeling and simulation. , 2012, , .		11
438	Amorphous Silicon Position Sensitive Detector Array for Fast 3-D Object Profiling. IEEE Sensors Journal, 2012, 12, 812-820.	2.4	11
439	Modulations in effective work function of platinum gate electrode in metal-oxide-semiconductor devices. Thin Solid Films, 2012, 520, 4556-4558.	0.8	11
440	a-GIZO TFT neural modeling, circuit simulation and validation. Solid-State Electronics, 2015, 105, 30-36.	0.8	11
441	Infection of human keratinocytes by Streptococcus dysgalactiae subspecies dysgalactiae isolated from milk of the bovine udder. Microbes and Infection, 2016, 18, 290-293.	1.0	11
442	Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices. Electrochimica Acta, 2017, 232, 484-494.	2.6	11
443	Helium and deuterium irradiation effects in W-Ta composites produced by pulse plasma compaction. Journal of Nuclear Materials, 2017, 492, 105-112.	1.3	11
444	"Electro‶yping―on a Carbonâ€Nanoparticlesâ€Filled Polymeric Film using Conducting Atomic Force Microscopy. Advanced Materials, 2017, 29, 1703079.	11.1	11
445	Nanofluid Based on Glucoseâ€Derived Carbon Dots Functionalized with [Bmim]Cl for the Next Generation of Smart Windows. Advanced Sustainable Systems, 2019, 3, 1900047.	2.7	11
446	Thin Film Position Sensitive Detectors: From 1D to 3D Applications. Springer Series in Materials Science, 2000, , 342-403.	0.4	11
447	Porous PDMS conformable coating for high power output carbon fibers/ZnO nanorod-based triboelectric energy harvesters. Nano Energy, 2021, 90, 106582.	8.2	11
448	Flexible nanostructured TiO2-based gas and UV sensors: a review. Discover Materials, 2022, 2, .	1.0	11
449	A-Si:H ambipolar diffusion length and effective lifetime measured by flying spot (FST) and spectral photovoltage (SPT) techniques. Journal of Non-Crystalline Solids, 1991, 137-138, 479-482.	1.5	10
450	32 linear array position sensitive detector based on NIP and hetero a-Si:H microdevices. Journal of Non-Crystalline Solids, 2002, 299-302, 1283-1288.	1.5	10

#	Article	IF	Citations
451	Composition and structure of silicon-carbide alloys obtained by hot wire and hot wire plasma assisted techniques. Vacuum, 2002, 64, 261-266.	1.6	10
452	Spectroscopic ellipsometry study of amorphous silicon anodically oxidised. Thin Solid Films, 2003, 427, 345-349.	0.8	10
453	Dependence of TFT performance on the dielectric characteristics. Thin Solid Films, 2003, 427, 71-76.	0.8	10
454	Super linear position sensitive detectors using MIS structures. Optical Materials, 2005, 27, 1088-1092.	1.7	10
455	Metal induced crystallization: Gold versus aluminium. Journal of Materials Science, 2005, 40, 1387-1391.	1.7	10
456	Nickel-assisted metal-induced crystallization of silicon: Effect of native silicon oxide layer. Thin Solid Films, 2006, 511-512, 275-279.	0.8	10
457	Non-isothermal kinetic study on the decomposition of Zn acetate-based Sol-gel precursor. Journal of Thermal Analysis and Calorimetry, 2007, 89, 505-509.	2.0	10
458	Study of environmental degradation of silver surface. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1215-1218.	0.8	10
459	High-gain amplifier with n-type transistors. , 2013, , .		10
460	Operational stability of solution based zinc tin oxide/SiO ₂ thin film transistors under gate bias stress. APL Materials, 2015, 3, 062804.	2.2	10
461	Mobile Based Gold Nanoprobe TB Diagnostics for Point-of-Need. Methods in Molecular Biology, 2015, 1256, 41-56.	0.4	10
462	Energy-dependent relaxation time in quaternary amorphous oxide semiconductors probed by gated Hall effect measurements. Physical Review B, 2017, 95, .	1.1	10
463	Boosting highly transparent and conducting indium zinc oxide thin films through solution combustion synthesis: influence of rapid thermal annealing. Semiconductor Science and Technology, 2018, 33, 105004.	1.0	10
464	Demonstration of the ability of the bacterial polysaccharide FucoPol to flocculate kaolin suspensions. Environmental Technology (United Kingdom), 2020, 41, 287-295.	1.2	10
465	Optimization of ZnO Nanorods Concentration in a Micro-Structured Polymeric Composite for Nanogenerators. Chemosensors, 2021, 9, 27.	1.8	10
466	Handwritten and Sustainable Electronic Logic Circuits with Fully Printed Paper Transistors. Advanced Materials Technologies, 2021, 6, 2100633.	3.0	10
467	Light management with quantum nanostructured dots-in-host semiconductors. Light: Science and Applications, 2021, 10, 231.	7.7	10
468	Smart IoT enabled interactive self-powered security tag designed with functionalized paper. Nano Energy, 2022, 95, 107021.	8.2	10

#	Article	IF	Citations
469	Investigation of the amorphous to microcrystalline phase transition of thin film silicon produced by PECVD. Thin Solid Films, 1998, 317, 144-148.	0.8	9
470	Study of the effect of different plasma-enhanced chemical vapour deposition reactor configurations on the properties of hydrogenated amorphous silicon thin films. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 475-486.	0.6	9
471	ITO films deposited by rf-PERTE on unheated polymer substrates—properties dependence on In–Sn alloy composition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 245-248.	1.7	9
472	Characterization of the density of states of polymorphous silicon films produced at 13.56 and 27.12 MHz using CPM and SCLC techniques. Journal of Non-Crystalline Solids, 2004, 338-340, 206-210.	1.5	9
473	ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 66-69.	1.7	9
474	Room temperature dc and ac electrical behaviour of undoped ZnO films under UV light. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 135-140.	1.7	9
475	Conditions to prepare PPy/Al2O3/Al used as a solid-state capacitor from aqueous malic solutions. Journal of Power Sources, 2006, 160, 1471-1479.	4.0	9
476	Electrical properties of amorphous and nanocrystalline hydrogenated silicon films obtained by impedance spectroscopy. Thin Solid Films, 2006, 511-512, 390-393.	0.8	9
477	Effect of base and oxygen partial pressures on the electrical and optical properties of indium molybdenum oxide thin films. Thin Solid Films, 2007, 515, 8549-8552.	0.8	9
478	Low temperature high k dielectric on poly-Si TFTs. Journal of Non-Crystalline Solids, 2008, 354, 2534-2537.	1.5	9
479	Characterization of mesoporous ZnO:SiO2 films obtained by the sol–gel method. Thin Solid Films, 2010, 518, 7002-7006.	0.8	9
480	Characterization of polyetherâ€poly(methyl methacrylate)â€lithium perchlorate blend electrolytes. Polymers for Advanced Technologies, 2011, 22, 1753-1759.	1.6	9
481	The electronic transport mechanism in indium molybdenum oxide thin films RF sputtered at room temperature. Europhysics Letters, 2012, 97, 36002.	0.7	9
482	Single nucleotide polymorphism detection using gold nanoprobes and bioâ€microfluidic platform with embedded microlenses. Biotechnology and Bioengineering, 2015, 112, 1210-1219.	1.7	9
483	Gravure printed sol–gel derived AlOOH hybrid nanocomposite thin films for printed electronics. Journal of Materials Chemistry C, 2015, 3, 1776-1786.	2.7	9
484	Optoelectronics and Bio Devices on Paper Powered by Solar Cells. , 0, , .		9
485	Microneedle Arrays of Polyhydroxyalkanoate by Laser-Based Micromolding Technique. ACS Applied Bio Materials, 2020, 3, 5856-5864.	2.3	9
486	Digital Microfluidics-Powered Real-Time Monitoring of Isothermal DNA Amplification of Cancer Biomarker. Biosensors, 2022, 12, 201.	2.3	9

#	Article	IF	Citations
487	Tailoring the Interface in High Performance Planar Perovskite Solar Cell by ZnOS Thin Film. ACS Applied Energy Materials, 2022, 5, 5680-5690.	2.5	9
488	Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis. ACS Photonics, 2022, 9, 2408-2421.	3.2	9
489	Role of oxygen partial pressure on the properties of doped silicon oxycarbide microcrystalline layers produced by spatial separation techniques. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2199-2209.	0.9	8
490	Interpretation of the static and dynamic characteristics of 1-D thin film position sensitive detectors based on a-Si:H p-i-n diodes. IEEE Transactions on Electron Devices, 1996, 43, 2143-2152.	1.6	8
491	Thin oxide interface layers in a-Si:H MIS structures. Journal of Non-Crystalline Solids, 1998, 227-230, 1230-1234.	1.5	8
492	Plasma diagnostics of a PECVD system using different R.F. electrode configurations. Vacuum, 2000, 56, 31-37.	1.6	8
493	Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films. Thin Solid Films, 2001, 383, 165-168.	0.8	8
494	Performance of a-Six:C1â^'x:H Schottky barrier and pin diodes used as position sensitive detectors. Journal of Non-Crystalline Solids, 2002, 299-302, 1277-1282.	1.5	8
495	High quality a-Si:H films for MIS device applications. Thin Solid Films, 2002, 403-404, 26-29.	0.8	8
496	Polymorphous silicon deposited in large area reactor at 13 and 27 MHz. Thin Solid Films, 2003, 427, 6-10.	0.8	8
497	Spectroscopic ellipsometry study of nickel induced crystallization of a-Si. Journal of Non-Crystalline Solids, 2006, 352, 1204-1208.	1.5	8
498	Characterization of optoelectronic platform using an amorphous/nanocrystalline silicon biosensor for the specific identification of nucleic acid sequences based on gold nanoparticle probes. Sensors and Actuators B: Chemical, 2008, 132, 508-511.	4.0	8
499	Identification of unamplified genomic DNA sequences using gold nanoparticle probes and a novel thin film photodetector. Journal of Non-Crystalline Solids, 2008, 354, 2580-2584.	1.5	8
500	Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors. Sensors, 2010, 10, 8173-8184.	2.1	8
501	Plastic Compatible Sputtered ${hbox{Ta}}_{2}{hbox{O}}_{5}$ Sensitive Layer for Oxide Semiconductor TFT Sensors. Journal of Display Technology, 2013, 9, 723-728.	1.3	8
502	Fast Switching Electrochromic Devices Containing Optimized BEMA/PEGMA Gel Polymer Electrolytes. International Journal of Electrochemistry, 2013, 2013, 1-10.	2.4	8
503	Photocatalytic Activity of TiO2 Nanostructured Arrays Prepared by Microwave-Assisted Solvothermal Method. , 0, , .		8
504	Substrate reactivity as the origin of Fermi level pinning at the Cu ₂ O/ALD-Al ₂ O ₃ interface. Materials Research Express, 2016, 3, 046404.	0.8	8

#	Article	IF	CITATIONS
505	Non-enzymatic lab-on-paper devices for biosensing applications. Comprehensive Analytical Chemistry, 2020, , 189-237.	0.7	8
506	Electrochromic Device Composed of a Di-Urethanesil Electrolyte Incorporating Lithium Triflate and 1-Butyl-3-Methylimidazolium Chloride. Frontiers in Materials, 2020, 7, .	1.2	8
507	Enhanced solar photocatalysis of TiO ₂ nanoparticles and nanostructured thin films grown on paper. Nano Express, 2021, 2, 040002.	1.2	8
508	UV-Responsive Screen-Printed Porous ZnO Nanostructures on Office Paper for Sustainable and Foldable Electronics. Chemosensors, 2021, 9, 192.	1.8	8
509	Bioconversion of Terephthalic Acid and Ethylene Glycol Into Bacterial Cellulose by Komagataeibacter xylinus DSM 2004 and DSM 46604. Frontiers in Bioengineering and Biotechnology, 2022, 10, 853322.	2.0	8
510	Characteristics of a linear array of a-Si:H thin film position sensitive detector. Thin Solid Films, 1999, 337, 222-225.	0.8	7
511	Correlation between the microscopic and macroscopic characteristics of SnO2 thin film gas sensors. Solid State Sciences, 2001, 3, 1349-1351.	0.8	7
512	Correlation between a-Si:H surface oxidation process and the performance of MIS structures. Thin Solid Films, 2001, 383, 185-188.	0.8	7
513	Mass spectroscopy analysis during the deposition of a-SiC:H and a-C:H films produced by hot wire and hot wire plasma-assisted techniques. Applied Surface Science, 2001, 184, 60-65.	3.1	7
514	Effect of annealing on molybdenum doped indium oxide thin films RF sputtered at room temperature. Vacuum, 2008, 82, 1489-1494.	1.6	7
515	n-PS/a-Si:H heterojunction for device application. Journal of Non-Crystalline Solids, 2008, 354, 2632-2636.	1.5	7
516	Co-doping of aluminium and gallium with nitrogen in ZnO films deposited by RF magnetron sputtering. Journal of Physics Condensed Matter, 2008, 20, 075220.	0.7	7
517	Selfâ€sustained nâ€type memory transistor devices based on natural cellulose paper fibers. Journal of Information Display, 2009, 10, 149-157.	2.1	7
518	Intrinsic <i>p</i> Type ZnO Films Deposited by rf Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2009, 9, 813-816.	0.9	7
519	Effects of O7+ swift heavy ion irradiation on indium oxide thin films. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1836-1840.	0.6	7
520	High-gain topologies for transparent electronics. , 2013, , .		7
521	Engineered cellulose fibers as dielectric for oxide field effect transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1421-1426.	0.8	7
522	Wave-optical front structures on silicon and perovskite thin-film solar cells. , 2020, , 315-354.		7

#	Article	IF	Citations
523	Cellulose-Based Solid Electrolyte Membranes Through Microwave Assisted Regeneration and Application in Electrochromic Displays. Frontiers in Materials, 2020, 7, .	1.2	7
524	Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxide. Electronic Materials, 2021, 2, 105-115.	0.9	7
525	Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Life, 2021, 11, 935.	1.1	7
526	Visible Photoluminescent Zinc Oxide Nanorods for Label-Free Nonenzymatic Glucose Detection. ACS Applied Nano Materials, 2022, 5, 4386-4396.	2.4	7
527	Stacking-Dependent Electrical Transport in a Colloidal CdSe Nanoplatelet Thin-Film Transistor. Nano Letters, 2022, 22, 2780-2785.	4.5	7
528	Structure, composition and electro-optical properties of n-type amorphous and microcrystalline silicon thin films. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 249-258.	0.6	6
529	Role of the deposition parameters in the uniformity of films produced by the plasma-enhanced chemical vapour deposition technique. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 259-272.	0.6	6
530	Amorphous silicon sensors: from photo to chemical detection. Journal of Non-Crystalline Solids, 1998, 227-230, 1349-1353.	1.5	6
531	New metallurgical systems for electronic soldering applications. Sensors and Actuators A: Physical, 1999, 74, 70-76.	2.0	6
532	Fast and cheap method to qualitatively measure the thickness and uniformity of ZrO2 thin films. Materials Science in Semiconductor Processing, 2001, 4, 319-321.	1.9	6
533	Dependence of the Strains and Residual Mechanical Stresses on the Performances Presented by a-Si:H Thin Film Position Sensors. Advanced Engineering Materials, 2002, 4, 612-616.	1.6	6
534	ZnO:Ga Thin Films Produced by RF Sputtering at Room Temperature: Effect of the Power Density. Materials Science Forum, 2004, 455-456, 12-15.	0.3	6
535	Effect of the discharge frequency and impedance on the structural properties of polymorphous silicon. Thin Solid Films, 2004, 451-452, 264-268.	0.8	6
536	Flexible position sensitive photodetectors based on a-Si:H heterostructures. Sensors and Actuators A: Physical, 2004, 116, 119-124.	2.0	6
537	Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devices. Materials Science Forum, 2006, 514-516, 3-7.	0.3	6
538	Preliminary characterisation of LiAsF6 hybrid polymer electrolytes for electrochromic devices. Electrochimica Acta, 2011, 57, 52-57.	2.6	6
539	Away from silicon era: the paper electronics. Proceedings of SPIE, 2011, , .	0.8	6
540	3D scanning characteristics of an amorphous silicon position sensitive detector array system. Optics Express, 2012, 20, 4583.	1.7	6

#	Article	IF	CITATIONS
541	Strongly Photosensitive and Fluorescent F8T2 Electrospun Fibers. Macromolecular Materials and Engineering, 2013, 298, 174-180.	1.7	6
542	Performances of Microcrystalline Zinc Tin Oxide Thin-Film Transistors Processed by Spray Pyrolysis. Journal of Display Technology, 2013, 9, 825-831.	1.3	6
543	Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells. Science and Technology of Advanced Materials, 2013, 14, 045009.	2.8	6
544	Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence. Micromachines, 2016, 7, 181.	1.4	6
545	Structural, optical, and electronic properties of metal oxide nanostructures., 2019,, 59-102.		6
546	Soft-Microstructured Transparent Electrodes for Photonic-Enhanced Flexible Solar Cells. Micro, 2021, 1, 215-227.	0.9	6
547	Ta2O5/SiO2 Multicomponent Dielectrics for Amorphous Oxide TFTs. Electronic Materials, 2021, 2, 1-16.	0.9	6
548	Linear thin-film position-sensitive detector (LTFPSD) for 3D measurements. , 1995, , .		5
549	Static and dynamic resolution of 1D thin film position sensitive detector. Journal of Non-Crystalline Solids, 1996, 198-200, 1202-1206.	1.5	5
550	Photochemical sensors based on amorphous silicon thin films. Sensors and Actuators B: Chemical, 1998, 46, 202-207.	4.0	5
551	Role of the gas temperature and power to gas flow ratio on powder formation and properties of films grown by the PECVD technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 272-277.	1.7	5
552	Structural Characterisation of Zinc Oxide Thin Films Produced by Spray Pyrolysis. Key Engineering Materials, 2002, 230-232, 599-602.	0.4	5
553	From porous to compact films by changing the onset conditions of HW-CVD process. Thin Solid Films, 2003, 427, 225-230.	0.8	5
554	Amorphous silicon-based PINIP structure for color sensor. Thin Solid Films, 2005, 487, 268-270.	0.8	5
555	Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p–i–n solar cell. Solar Energy Materials and Solar Cells, 2005, 87, 349-355.	3.0	5
556	Zinc Oxide Thin Films used as an Ozone Sensor at Room Temperature. Materials Research Society Symposia Proceedings, 2006, 915, 1.	0.1	5
557	A Study on the Electrical Properties of ZnO Based Transparent TFTs. Materials Science Forum, 2006, 514-516, 68-72.	0.3	5
558	Effect of Oxidant/ Monomer Ratio on the Electrical Properties of Polypyrrole in Tantalum Capacitors. Materials Science Forum, 2006, 514-516, 43-47.	0.3	5

#	Article	IF	CITATIONS
559	Role of Trimethylboron to Silane Ratio on the Properties of <i>p</i> -Type Nanocrystalline Silicon Thin Film Deposited by Radio Frequency Plasma Enhanced Chemical Vapour Deposition. Journal of Nanoscience and Nanotechnology, 2010, 10, 2547-2551.	0.9	5
560	The effect of dopants on the morphology, microstructure and electrical properties of transparent zinc oxide films prepared by the sol-gel method. Thin Solid Films, 2011, 520, 1174-1177.	0.8	5
561	Effect of substrate temperature on the properties of pyrolytically deposited nitrogen-doped zinc oxide thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 103-108.	1.7	5
562	Luminescent Electrochromic Device Based on a Biohybrid Electrolyte Doped with a Mixture of Potassium Triflate and a Europium Â-diketonate Complex. ECS Transactions, 2014, 61, 213-225.	0.3	5
563	Design of a robust general-purpose low-offset comparator based on IGZO thin-film transistors. , 2015, , .		5
564	Basic analog and digital circuits with a-IGZO TFTs. , 2016, , .		5
565	Light-induced current mapping in oxide based solar cells with nanoscale resolution. Solar Energy Materials and Solar Cells, 2018, 176, 310-317.	3.0	5
566	Control of Eu Oxidation State in Y2O3â^'xSx:Eu Thin-Film Phosphors Prepared by Atomic Layer Deposition: A Structural and Photoluminescence Study. Materials, 2020, 13, 93.	1.3	5
567	Printed zinc tin oxide diodes: from combustion synthesis to large-scale manufacturing. Flexible and Printed Electronics, 2022, 7, 014005.	1.5	5
568	Poly(Thionine)-Modified Screen-Printed Electrodes for CA 19-9 Detection and Its Properties in Raman Spectroscopy. Chemosensors, 2022, 10, 92.	1.8	5
569	Microwave-Assisted Synthesis of Zn2SnO4 Nanostructures for Photodegradation of Rhodamine B under UV and Sunlight. Nanomaterials, 2022, 12, 2119.	1.9	5
570	A linear array thin film position sensitive detector for 3D measurements. Journal of Non-Crystalline Solids, 1996, 198-200, 1212-1216.	1.5	4
571	Transport properties of doped silicon oxycarbide microcrystalline films produced by spatial separation techniques. Solar Energy Materials and Solar Cells, 1996, 41-42, 493-517.	3.0	4
572	Dependence of amorphous silicon solar cell performances on the lateral drift current. Solar Energy Materials and Solar Cells, 1997, 45, 1-15.	3.0	4
573	Correlation Between Surface/Interface States and the Performance of MIS Structures. Materials Research Society Symposia Proceedings, 2000, 609, 1211.	0.1	4
574	Morphological and structural characteristics presented by the Cu–Sn–Cu metallurgical system used in electronic joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 288, 248-252.	2.6	4
575	Production of low cost contacts and joins for large area devices by electrodeposition of Cu and Sn. Applied Surface Science, 2000, 168, 292-295.	3.1	4
576	Improvement of a-Si:H device stability and performances by proper design of the interfaces. Journal of Non-Crystalline Solids, 2000, 266-269, 1094-1098.	1.5	4

#	Article	IF	CITATIONS
577	Silicon carbide photodiodes: Schottky and PINIP structures. Applied Surface Science, 2001, 184, 437-442.	3.1	4
578	Influence of the Plasma Regime on the Structural, Optical, Electrical and Morphological Properties of a-Si:H Thin Films. Materials Science Forum, 2001, 382, 11-20.	0.3	4
579	Engineering of a-Si:H device stability by suitable design of interfaces. Solar Energy Materials and Solar Cells, 2002, 73, 39-49.	3.0	4
580	a-Si:H TFT enhancement by plasma processing of the insulating/semiconductor interface. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 264-268.	1.7	4
581	Investigation of a-Si:H 1D MIS position sensitive detectors for application in 3D sensors. Journal of Non-Crystalline Solids, 2006, 352, 1787-1791.	1.5	4
582	Advances in transparent electronics: From materials to devices I. Thin Solid Films, 2008, 516, 1313.	0.8	4
583	Investigation of hydrocarbon coated porous silicon using PECVD technique to detect CO2 gas. Journal of Non-Crystalline Solids, 2008, 354, 2610-2614.	1.5	4
584	Paper field effect transistor. Proceedings of SPIE, 2009, , .	0.8	4
585	Structural, optical and electrical properties of indium–molybdenum oxide thin films prepared by spray pyrolysis. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1554-1557.	0.8	4
586	29.4: <i>Invited Paper</i> : Paper Electronics: A Challenge for the Future. Digest of Technical Papers SID International Symposium, 2013, 44, 365-367.	0.1	4
587	Preparation and Characterization of Hybrid Oxyethylene/Siloxane Electrolyte Systems. Electroanalysis, 2013, 25, 515-522.	1.5	4
588	Effect of N and P codoping on ZnO properties. Advanced Materials Research, 0, 645, 64-67.	0.3	4
589	Green Nanotechnology from Waste Carbon–Polyaniline Composite: Generation of Wavelengthâ€Independent Multiband Photoluminescence for Sensitive Ion Detection. Advanced Sustainable Systems, 2018, 2, 1700137.	2.7	4
590	Low Temperature Dissolution of Yeast Chitin-Glucan Complex and Characterization of the Regenerated Polymer. Bioengineering, 2020, 7, 28.	1.6	4
591	Solar spectral management with electrochromic devices including PMMA films doped with biluminescent ionosilicas. Journal of Sol-Gel Science and Technology, 2022, 101, 58-70.	1.1	4
592	Combining Soft with Hard Condensed Matter for Circular Polarized Light Sensing and Logic Operations. Advanced Optical Materials, 2021, 9, 2001731.	3.6	4
593	New strategies toward high-performance and low-temperature processing of solution-based metal oxide TFTs., 2021,, 585-621.		4
594	N-Type Oxide Semiconductor Thin-Film Transistors. Springer Series in Materials Science, 2012, , 435-476.	0.4	4

#	Article	IF	Citations
595	A facile approach to the synthesis of bilayer hematite films for efficient photocatalytic degradation of methylene blue dye in aqueous solution. International Journal of Environmental Analytical Chemistry, 2024, 104, 813-826.	1.8	4
596	Flexible, scalable, and efficient thermoelectric touch detector based on PDMS and graphite flakes. Flexible and Printed Electronics, 2021, 6, 045018.	1.5	4
597	Role of Photodegradation on the x03C4;Product and Microstructure of the a-Si:H Pin Devices. Materials Research Society Symposia Proceedings, 1993, 297, 637.	0.1	3
598	Selective optical sensors from 0.25 to $1.1\hat{l}$ /4m based on metal oxide-semiconductor heterojunctions. Sensors and Actuators A: Physical, 1998, 68, 333-337.	2.0	3
599	Performances of a-Si:H films produced by hot wire plasma assisted technique. Vacuum, 1999, 52, 203-208.	1.6	3
600	Large Area Flexible Amorphous Silicon Position Sensitive Detectors. Materials Research Society Symposia Proceedings, 2000, 609, 1271.	0.1	3
601	Thin film combustible gas sensors based on Zinc Oxide. Materials Research Society Symposia Proceedings, 2001, 666, 521.	0.1	3
602	Role of the gas pressure and hydrogen dilution on the properties of large area nanocrystalline p-type silicon films produced by hot wire technique. Materials Science and Engineering C, 2001, 15, 141-144.	3.8	3
603	Hot-wire plasma assisted chemical vapor deposition: A deposition technique to obtain silicon thin films. Journal of Applied Physics, 2002, 91, 1644-1649.	1.1	3
604	Study of the Sensing Mechanism of SnO ₂ Thin-Film Gas Sensors Using Hall Effect Measurements. Key Engineering Materials, 2002, 230-232, 357-360.	0.4	3
605	Metal-ferroelectric thin film devices. Journal of Non-Crystalline Solids, 2002, 299-302, 1311-1315.	1.5	3
606	Composite systems for flexible display applications from cellulose derivatives. Synthetic Metals, 2002, 127, 111-114.	2.1	3
607	Influence of a DC grid on silane r.f. plasma properties. Vacuum, 2002, 64, 387-392.	1.6	3
608	Effect of Annealing on Gold Rectifying Contacts in Amorphous Silicon. Materials Science Forum, 2004, 455-456, 96-99.	0.3	3
609	Properties of ITO films deposited by plasma enhanced RTE on unheated polymer sheets – dependence on rf electrode distance from substrates. Journal of Non-Crystalline Solids, 2004, 338-340, 630-633.	1.5	3
610	Impedance study of the electrical properties of poly-Si thin film transistors. Journal of Non-Crystalline Solids, 2006, 352, 1737-1740.	1.5	3
611	Performances of an in-line PECVD system used to produce amorphous and nanocrystalline silicon solar cells. Thin Solid Films, 2006, 511-512, 238-242.	0.8	3
612	Influence of the self-buffer layer on ZnO film grown by atmospheric metal organic chemical vapor deposition. Thin Solid Films, 2006, 515, 1527-1531.	0.8	3

#	Article	IF	Citations
613	3 dimensional polymorphous silicon based metal-insulator-semiconductor position sensitive detectors. Thin Solid Films, 2007, 515, 7530-7533.	0.8	3
614	Indium molybdenum oxide thin films: A comparative study by two different RF sputtering systems. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2123-2127.	0.8	3
615	Influence of Deposition Pressure on N-doped ZnO Films by RF Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2010, 10, 2674-2678.	0.9	3
616	Uniform Arrays of ZnO 1D Nanostructures Grown on Al:ZnO Seeds Layers by Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2013, 13, 6701-6710.	0.9	3
617	Evaluation of the optoelectronic properties and corrosion behavior of Al ₂ O ₃ -doped ZnO films prepared by dc pulsed magnetron sputtering. Journal Physics D: Applied Physics, 2014, 47, 485501.	1.3	3
618	Color sensing ability of an amorphous silicon position sensitive detector array system. Sensors and Actuators A: Physical, 2014, 205, 26-37.	2.0	3
619	Energy band alignment at the nanoscale. Applied Physics Letters, 2017, 110, 051603.	1.5	3
620	Chromogenic applications., 2019,, 103-147.		3
621	Frontispiece: Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chemistry - A European Journal, 2020, 26, .	1.7	3
622	Orientation dependence of electrical properties of polycrystalline Cu2O thin films. Semiconductor Science and Technology, 2020, 35, 075016.	1.0	3
623	Porous ZnO Nanostructures Synthesized by Microwave Hydrothermal Method for Energy Harvesting Applications. , 0, , .		3
624	Hydrothermal Synthesis of Zinc Tin Oxide Nanostructures for Photocatalysis, Energy Harvesting and Electronics., 0,,.		3
625	Influencia del gas portador en las propiedades de pelÃculas de ZnO crecidas mediante MOCVD. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2008, 47, 242-244.	0.9	3
626	Eâ€Skin Piezoresistive Pressure Sensor Combining Laser Engraving and Shrinking Polymeric Films for Health Monitoring Applications. Advanced Materials Interfaces, 2021, 8, 2100877.	1.9	3
627	High entropy alloy CrFeNiCoCu sputter deposited films: Structure, electrical properties, and oxidation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	3
628	Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductors. Nanomaterials, 2022, 12, 2167.	1.9	3
629	Substrate effect on the electrical properties of aâ€Si:H thin films and its modification by diffusionâ€blocking interlayers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 2628-2631.	0.9	2
630	Light and temperature effect on pin a-Si: H device performance. Vacuum, 1994, 45, 1147-1149.	1.6	2

#	Article	IF	CITATIONS
631	A linear array position sensitive detector based on amorphous silicon. Review of Scientific Instruments, 1995, 66, 5317-5321.	0.6	2
632	Lateral effects in amorphous silicon photodiodes. Optical Materials, 1996, 5, 137-144.	1.7	2
633	Performances presented by large-area thin film position-sensitive detectors based on amorphous silicon. Thin Solid Films, 1996, 272, 148-156.	0.8	2
634	Thin films applied to integrated optical position-sensitive detectors. Thin Solid Films, 1998, 317, 421-424.	0.8	2
635	Amorphous silicon thin films applied to photochemical sensors. Vacuum, 1999, 52, 41-44.	1.6	2
636	Nanocrystalline p-type silicon films produced by hot wire plasma assisted technique. Materials Science and Engineering C, 2001, 15, 137-140.	3.8	2
637	Properties Presented by Tin Oxide Thin Films Deposited by Spray Pyrolysis. Solid State Phenomena, 2001, 80-81, 139-144.	0.3	2
638	Properties Presented by ZnO Thin Films Deposited by Magnetron Sputtering and Spray Pyrolysis. Key Engineering Materials, 2002, 230-232, 424-427.	0.4	2
639	Highly Conductive/Transparent ZnO:Al Thin Films Deposited at Room Temperature by rf Magnetron Sputtering. Key Engineering Materials, 2002, 230-232, 571-574.	0.4	2
640	Role of the i layer surface properties on the performance of a-Si:H Schottky barrier photodiodes. Sensors and Actuators A: Physical, 2002, 99, 220-223.	2.0	2
641	Combining HW-CVD and PECVD techniques to produce a-Si:H films. Thin Solid Films, 2003, 427, 231-235.	0.8	2
642	Physical Properties of Sputtered ITO and WO ₃ Thin Films. Materials Science Forum, 2004, 455-456, 7-11.	0.3	2
643	Ethanol vapour detector based in porous a-Si:H films produced by HW-CVD technique. Sensors and Actuators B: Chemical, 2004, 100, 236-239.	4.0	2
644	Effect of an interfacial oxide layer in the annealing behaviour of Au/a-Si:H MIS photodiodes. Journal of Non-Crystalline Solids, 2004, 338-340, 810-813.	1.5	2
645	Characterization of silicon carbide thin films and their use in colour sensor. Solar Energy Materials and Solar Cells, 2005, 87, 343-348.	3.0	2
646	Thermoreactivity of Sol-Gel Precursor for ZnO-Based Thin Films. Materials Science Forum, 2006, 514-516, 73-77.	0.3	2
647	Study of Electrochromic Devices Incorporating a Polymer Gel Electrolyte Component. Materials Science Forum, 2006, 514-516, 83-87.	0.3	2
648	Insights on Amorphous Silicon Nip and MIS 3D Position Sensitive Detectors. Materials Science Forum, 2006, 514-516, 13-17.	0.3	2

#	Article	IF	CITATIONS
649	Novel Optoelectronic Platform using an Amorphous/Nanocrystalline Silicon Biosensor for the Specific Identification of Unamplified Nucleic Acid Sequences Based on Gold Nanoparticle Probes., 2007,,.		2
650	Multipliers with transparent a-GIZO TFTs using a neural model. , 2012, , .		2
651	The Future Is Paper Based. Information Display, 2014, 30, 20-24.	0.1	2
652	Transparent Current Mirrors Using a-GIZO TFTs: Simulation with RBF Models and Fabrication. , 2014, , .		2
653	Simulated and Real Sheet-of-Light 3D Object Scanning Using a-Si:H Thin Film PSD Arrays. Sensors, 2015, 15, 29938-29949.	2.1	2
654	Scalable approach for the production of functional DNA based gold nanoprobes. Journal of Membrane Science, 2015, 492, 528-535.	4.1	2
655	Photovoltaics: Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer (Adv. Mater. Interfaces 2/2018). Advanced Materials Interfaces, 2018, 5, 1870007.	1.9	2
656	Solar Cells: Selfâ€Cleaned Photonicâ€Enhanced Solar Cells with Nanostructured Paryleneâ€C (Adv. Mater.) Tj E	TQq <u>0</u> ,00 r	gBT2/Overlock
657	A New Ultra-Light Flexible Large Area Thin Film PSD Based on Amorphous Silicon. , 0, , 421-427.		2
658	Hydrogenated thin film silicon semiconductors produced by a two consecutive decomposition and deposition chamber system. Vacuum, 1989, 39, 789-790.	1.6	1
659	Application of thin film technology to optical sensors. Vacuum, 1994, 45, 1151-1154.	1.6	1
660	Correlation between the carbon and hydrogen contents with the gas species and the plasma impedance of silicon carbide films produced by PECVD technique. Applied Surface Science, 2001, 184, 101-106.	3.1	1
661	Large-Area Polycrystalline p-Type Silicon Films Produced by the Hot Wire Technique. Solid State Phenomena, 2001, 80-81, 47-52.	0.3	1
662	Silicon nanostructure thin film materials. Vacuum, 2002, 64, 219-226.	1.6	1
663	Characterization of Polymorphous Silicon Thin Film and Solar Cells. Materials Science Forum, 2004, 455-456, 77-80.	0.3	1
664	Composition, Structure and Optical Characteristics of Polymorphous Silicon Films Deposited by PECVD at 27.12 MHz. Materials Science Forum, 2004, 455-456, 100-103.	0.3	1
665	Growth of Polymorphous/Nanocrystalline Silicon Films Deposited by PECVD at 13.56 MHz. Materials Science Forum, 2004, 455-456, 532-535.	0.3	1
666	Batch Processing Method to Deposit a-Si:H Films by PECVD. Materials Science Forum, 2004, 455-456, 104-107.	0.3	1

#	Article	IF	CITATIONS
667	Silicon Etching in CF ₄ /O ₂ and SF ₆ Atmospheres. Materials Science Forum, 2004, 455-456, 120-123.	0.3	1
668	Role of the rf frequency on the structure and composition of polymorphous silicon films. Journal of Non-Crystalline Solids, 2004, 338-340, 183-187.	1.5	1
669	Molybdenum doped Indium Oxide thin films prepared by rf sputtering. Materials Research Society Symposia Proceedings, 2005, 905, 1.	0.1	1
670	Study of a-SiC:H buffer layer on nc-Si/a-Si:H solar cells deposited by PECVD technique. , 0, , .		1
671	Micro electronic and macro optical parameters of the ITO films prepared by DC sputtering for electrochromic applications. , 2006, , .		1
672	Influence of the Electrical and Structural Properties of Tin Oxide on the Performances of Combustible Gas Sensors., 2006,, 477-482.		1
673	Influence of the ex-situ and in-situ annealed self-buffer layer on ZnO film. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1010-1013.	0.8	1
674	Role of Hydrogen Plasma on the Electrical and Optical Properties of Indium Zinc Transparent Conductive Oxide. Materials Science Forum, 2006, 514-516, 63-67.	0.3	1
675	Poly-Si Thin Film Transistors: Effect of Metal Thickness on Silicon Crystallization. Materials Science Forum, 2006, 514-516, 28-32.	0.3	1
676	Electrical Performances of Low Temperature Annealed Hafnium Oxide Deposited at Room Temperature. Materials Science Forum, 2006, 514-516, 58-62.	0.3	1
677	Metal contamination detection in nickel induced crystallized silicon by spectroscopic ellipsometry. Journal of Non-Crystalline Solids, 2008, 354, 2319-2323.	1.5	1
678	Effect of annealing on the properties of RF sputtered indium molybdenum oxide thin films. Journal of Non-Crystalline Solids, 2008, 354, 2831-2838.	1.5	1
679	New Amorphous Oxide Semiconductor for Thin Film Transistors (TFTs). Materials Science Forum, 2008, 587-588, 348-352.	0.3	1
680	Floating gate memory paper transistor. , 2010, , .		1
681	Influence of oxygen partial pressure on properties of N-doped ZnO films deposited by magnetron sputtering. Transactions of Nonferrous Metals Society of China, 2010, 20, 2326-2330.	1.7	1
682	Multicomponent dielectrics for oxide TFT. Proceedings of SPIE, 2012, , .	0.8	1
683	Cu2O nanowires produced by oxidation of Cu nanowires: a comparison between microwave irradiation and furnace annealing in atmospheric conditions. Microscopy and Microanalysis, 2015, 21, 112-113.	0.2	1
684	A combination of solution synthesis & Diution combustion synthesis for highly conducting and transparent Aluminum Zinc Oxide thin films., 2015,,.		1

#	Article	IF	Citations
685	Solution Combustion Synthesis: Applications in Oxide Electronics. , 2016, , .		1
686	Transistors: Solid State Electrochemical WO ₃ Transistors with High Current Modulation (Adv. Electron. Mater. 9/2016). Advanced Electronic Materials, 2016, 2, .	2.6	1
687	Green Nanotechnology: Green Nanotechnology from Waste Carbon–Polyaniline Composite: Generation of Wavelengthâ€Independent Multiband Photoluminescence for Sensitive Ion Detection (Adv. Sustainable Syst. 1/2018). Advanced Sustainable Systems, 2018, 2, 1870002.	2.7	1
688	Oxide nanoparticle hybrid materials and applications. , 2019, , 235-281.		1
689	Oxide materials for energy applications. , 2019, , 199-234.		1
690	SPECTRAL RESPONSE OF LARGE AREA AMORPHOUS SILICON SOLAR CELLS. High Temperature Material Processes, 2004, 8, 293-299.	0.2	1
691	Surface-enhanced Raman scattering paper-based analytical devices. , 2022, , 117-167.		1
692	Electron paramagnetic resonance of defects in doped microcrystalline silicon. Vacuum, 1989, 39, 791-794.	1.6	0
693	A-Si:H Ambipolar Diffusion Length and Effective Lifetime Measured by Flying Spot Technique (FST). Materials Research Society Symposia Proceedings, 1991, 219, 863.	0.1	0
694	Performances presented by a position-sensitive detector based on amorphous silicon technology. , 1993, , .		0
695	Temperature and light-induced degradation effect on a-Si:H photovoltaic PIN device properties. , 1993, , .		0
696	Influence of photodegradation on the ïï,, and microstructure of pin a-Si:H devices. Vacuum, 1994, 45, 1109-1111.	1.6	0
697	Simulation of the lateral photo effect in large-area 1D a-Si:H p-i-n thin-film position-sensitive detectors. , 1995, , .		0
698	Static behaviour of thin-film position-sensitive detectors based on p-i-n a-Si:H devices. Sensors and Actuators A: Physical, 1995, 51, 143-151.	2.0	0
699	From intelligent materials to smart sensors. , 1996, , .		0
700	Two Step Process for the Growth of a Thin Layer of Silicon Dioxide for Tunneling Effect Applications. Materials Research Society Symposia Proceedings, 2000, 619, 179.	0.1	0
701	Role of soldering parameters on the electrical performances presented by Cu–Sn–Cu joints used in power diodes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 288, 275-279.	2.6	0
702	Properties of ZnO Thin Films Deposited by Spray Pyrolysis and Magnetron Sputtering. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	0

#	Article	IF	Citations
703	Thin Film Metal Oxide Semiconductors Deposited on Polymeric Substrates. Materials Research Society Symposia Proceedings, 2001, 666, 1131.	0.1	0
704	Characterization of Zinc Oxide Thin Films Deposited by rf Magnetron Sputtering on Mylar Substrates. Materials Research Society Symposia Proceedings, 2001, 666, 3211.	0.1	0
705	Zinc Oxide Thin Films Deposited by RF Magnetron Sputtering on Mylar Substrates at Room Temperature. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	0
706	Thin Film Metal Oxide Semiconductors Deposited on Polymeric Substrates. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	0
707	Performances Presented by Large Area ZnO Thin Films Deposited by Spray Pyrolysis. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	0
708	Effect of Deposition Conditions upon Gas Sensitivity of Zinc Oxide Thin Films Deposited by Spray Pyrolysis. Solid State Phenomena, 2001, 80-81, 151-154.	0.3	0
709	Silicon Films Produced by PECVD under Powder Formation Conditions. Materials Science Forum, 2001, 382, 21-30.	0.3	0
710	Influence of the Plasma Regime on the Structural, Optical and Transport Properties of a-Si:H Thin Films. Key Engineering Materials, 2002, 230-232, 583-586.	0.4	0
711	New Adhesion Process Based on Lead-Free Solder Applied in Electronic Power Devices. Key Engineering Materials, 2002, 230-232, 92-95.	0.4	0
712	Role of the Density of States in the Colour Selection of the Collection Spectrum of Amorphous Silicon-Based Schottky Photodiodes. Key Engineering Materials, 2002, 230-232, 559-562.	0.4	0
713	Optical and Photoelectric Properties of PZT Films for Microelectronic Applications. Key Engineering Materials, 2002, 230-232, 563-566.	0.4	0
714	Influence of Hydrogen Gas Dilution on the Properties of Silicon-Doped Thin Films Prepared by the Hot-Wire Plasma-Assisted Technique. Key Engineering Materials, 2002, 230-232, 591-594.	0.4	0
715	Role of the i-Layer Thickness in the Performance of a-Si:H Schottky Barrier Photodiodes. Key Engineering Materials, 2002, 230-232, 587-590.	0.4	0
716	Growth Model of Gas Species Produced by the Hot-Wire and Hot-Wire Plasma-Assisted Techniques. Key Engineering Materials, 2002, 230-232, 603-606.	0.4	0
717	The properties of a-Si:H films deposited on Mylar substrates by hot-wire plasma assisted technique. Journal of Non-Crystalline Solids, 2002, 299-302, 30-35.	1.5	0
718	Influence of the Rapid Thermal Annealing on the Properties of Thin a-Si Films. Materials Science Forum, 2004, 455-456, 108-111.	0.3	0
719	Role of Substrate on the Growth Process of Polycrystalline Silicon Thin Films by Low-Pressure Chemical Vapour Deposition. Materials Science Forum, 2004, 455-456, 112-115.	0.3	0
720	Sputtering Preparation of Silicon Nitride Thin Films for Gate Dielectric Applications. Materials Science Forum, 2004, 455-456, 69-72.	0.3	0

#	Article	IF	CITATIONS
721	MIS Photodiodes of Polymorphous Silicon Deposited at Higher Growth Rates by 27.12 MHz PECVD Discharge. Materials Science Forum, 2004, 455-456, 73-76.	0.3	O
722	Effect of Thermal Treatment on the Properties of Sol-Gel Derived Al-Doped ZnO Thin Films. Materials Science Forum, 2004, 455-456, 16-19.	0.3	0
723	Improvement of Field-Effect Mobilities in TFTs: Surface Plasma Treatments Vs Stack Dielectric Structures. Materials Science Forum, 2004, 455-456, 64-68.	0.3	O
724	Properties of a-Si:H intrinsic films produced by HWPA-CVD technique. Thin Solid Films, 2004, 451-452, 366-369.	0.8	0
725	Effect of the tunnelling oxide thickness and density on the performance of MIS photodiodes. Thin Solid Films, 2004, 451-452, 361-365.	0.8	0
726	Effect of the tunnelling oxide growth by H2O2 oxidation on the performance of a-Si:H MIS photodiodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 256-259.	1.7	0
727	Novel Multilayer Coatings on Polyethylene for Acetabular Devices. Materials Science Forum, 2006, 514-516, 868-871.	0.3	0
728	The Study of High Temperature Annealing of a-SiC:H Films. Materials Science Forum, 2006, 514-516, 18-22.	0.3	0
729	Characterization of Nickel Induced Crystallized Silicon by Spectroscopic Ellipsometry. Materials Research Society Symposia Proceedings, 2006, 910, 6.	0.1	0
730	Preface: phys. stat. sol. (a) 205/8. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1883-1884.	0.8	0
731	Optical and Microstructural Investigations of Porous Silicon Coated with a-Si:H Using PECVD Technique. Materials Science Forum, 0, 587-588, 308-312.	0.3	0
732	Zinc oxide and related compounds: order within the disorder. Proceedings of SPIE, 2009, , .	0.8	0
733	Nanostructured Silicon Based Thin Film Transistors Processed in the Plasma Dark Region. Journal of Nanoscience and Nanotechnology, 2010, 10, 2938-2943.	0.9	0
734	Foreword [Special Issue on the 8th International Thin-Film Transistor Conference (ITC 2012)]. Journal of Display Technology, 2013, 9, 687-687.	1.3	0
735	Photocurrent enhancement in thin a-Si:H solar cells via plasmonic light trapping. , 2014, , .		0
736	How materials innovations will lead to device revolution?. , 2015, , .		0
737	Metal Oxide Nanoparticle Engineering for Printed Electrochemical Applications., 2015,, 1-29.		0
738	Electrochemical Transistor Based on Tungsten Oxide with Optoelectronic Properties. IFIP Advances in Information and Communication Technology, 2016, , 542-550.	0.5	0

#	Article	IF	CITATIONS
739	Novel linear analog-adder using a-IGZO TFTs. , 2016, , .		0
740	Paper electronics: a sustainable multifunctional platform. , 2018, , .		0
741	Electronic applications of oxide nanostructures. , 2019, , 149-197.		0
742	Conclusions and future perspectives. , 2019, , 283-295.		0
743	Microwave-Assisted Hydrothermal Synthesis of Zn2SnO4 Nanostructures for Photocatalytic Dye Degradation. Materials Proceedings, 2021, 4, 92.	0.2	0
744	43.1: Invited Paper: Functional Oxides to serve the Electronics Challenges of the Future. Digest of Technical Papers SID International Symposium, 2021, 52, 537-538.	0.1	0
745	Metal Oxide Nanoparticle Engineering for Printed Electrochemical Applications. , 2016, , 783-818.		0
746	Composites Based on PDMS and Graphite Flakes for Thermoelectric Sensing Applications. , 2022, 8, .		0