Joanna Goscianska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4407934/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insight into the Photocatalytic Activity of Cobalt-Based Metal–Organic Frameworks and Their Composites. Catalysts, 2022, 12, 110.	3.5	14
2	Nanoscience versus Viruses: The SARS oVâ€2 Case. Advanced Functional Materials, 2022, 32, 2107826.	14.9	8
3	Utilization of Phyllanthus emblica fruitÂstone as a Potential Biomaterial for Sustainable Remediation of Lead and Cadmium Ions from Aqueous Solutions. Molecules, 2022, 27, 3355.	3.8	9
4	Overcoming the paracetamol dose challenge with wrinkled mesoporous carbon spheres. Journal of Colloid and Interface Science, 2021, 586, 673-682.	9.4	25
5	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	18.8	56
6	Sustainable nickel catalyst for the conversion of lignocellulosic biomass to H2-rich gas. International Journal of Hydrogen Energy, 2021, 46, 10708-10722.	7.1	13
7	The beneficial effect of Cannabis Sativa seed oil on the epidermis. Current Cosmetic Science, 2021, 01, .	0.2	0
8	Identification of the Physicochemical Factors Involved in the Dye Separation via Methionineâ€Functionalized Mesoporous Carbons. Advanced Sustainable Systems, 2021, 5, 2100013.	5.3	3
9	Amine-Grafted Mesoporous Carbons as Benzocaine-Delivery Platforms. Materials, 2021, 14, 2188.	2.9	6
10	Der derzeitige Stand von MOF―und COFâ€Anwendungen. Angewandte Chemie, 2021, 133, 24174-24202.	2.0	18
11	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	13.8	450
12	On the importance of physicochemical parameters of copper and aminosilane functionalized mesoporous silica for hydroxychloroquine release. Materials Science and Engineering C, 2021, 130, 112438.	7.3	11
13	Synthesis and Characterization of Nanoporous Carbon Carriers for Losartan Potassium Delivery. Materials, 2021, 14, 7345.	2.9	10
14	A facile post-synthetic modification of ordered mesoporous carbon to get efficient catalysts for the formation of acetins. Catalysis Today, 2020, 357, 84-93.	4.4	25
15	Synergistic effect of functional groups in carbonaceous spheres on the formation of fuel enhancers from glycerol. Fuel, 2020, 280, 118523.	6.4	12
16	Design of Paracetamol Delivery Systems Based on Functionalized Ordered Mesoporous Carbons. Materials, 2020, 13, 4151.	2.9	8
17	The Influence of Carbon Nature on the Catalytic Performance of Ru/C in Levulinic Acid Hydrogenation with Internal Hydrogen Source. Molecules, 2020, 25, 5362.	3.8	6
18	Controlling the morphology of metal–organic frameworks and porous carbon materials: metal oxides as primary architecture-directing agents. Chemical Society Reviews, 2020, 49, 3348-3422.	38.1	190

JOANNA GOSCIANSKA

#	Article	IF	CITATIONS
19	Multiple light scattering as a method to determine the dispersion stability of amino-functionalized mesoporous carbon. Journal of Molecular Liquids, 2019, 278, 1-4.	4.9	1
20	Removal of 2,4-D herbicide from aqueous solution by aminosilane-grafted mesoporous carbons. Adsorption, 2019, 25, 345-355.	3.0	23
21	Hydrothermal-assisted synthesis of highly crystalline titania–copper oxide binary systems with enhanced antibacterial properties. Materials Science and Engineering C, 2019, 104, 109839.	7.3	14
22	Lanthanum enriched aminosilane-grafted mesoporous carbon material for efficient adsorption of tartrazine azo dye. Microporous and Mesoporous Materials, 2019, 280, 7-19.	4.4	29
23	Optimal synthesis of oxidized mesoporous carbons for the adsorption of heavy metal ions. Journal of Molecular Liquids, 2019, 276, 630-637.	4.9	53
24	Dispersion stability of the aminosilane-grafted mesoporous carbons in different solvents. Microporous and Mesoporous Materials, 2018, 265, 149-161.	4.4	11
25	The development of zirconia/silica hybrids for the adsorption and controlled release of active pharmaceutical ingredients. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545, 39-50.	4.7	19
26	Removal of rhodamine B from water by modified carbon xerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543, 109-117.	4.7	62
27	Physicochemical characterization of ordered mesoporous carbons functionalized by wet oxidation. Journal of Materials Science, 2018, 53, 5997-6007.	3.7	16
28	Synthesis of carbon xerogels modified with amine groups and copper for efficient adsorption of caffeine. Chemical Engineering Journal, 2018, 345, 13-21.	12.7	35
29	Catalytic performance of ordered mesoporous carbons modified with lanthanides in dry methane reforming. Catalysis Today, 2018, 301, 204-216.	4.4	28
30	Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. Journal of Colloid and Interface Science, 2018, 513, 72-81.	9.4	150
31	An Active Anode Material Based on Titania and Zinc Oxide Hybrids Fabricated via a Hydrothermal Route: Comprehensive Physicochemical and Electrochemical Evaluations. Journal of the Electrochemical Society, 2018, 165, A3056-A3066.	2.9	3
32	TiO2-ZnO Binary Oxide Systems: Comprehensive Characterization and Tests of Photocatalytic Activity. Materials, 2018, 11, 841.	2.9	97
33	Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly(acrylic acid). Journal of Cleaner Production, 2018, 195, 821-830.	9.3	44
34	The Application of Vibrational Spectroscopy in Studies of Structural Polymorphism of Drugs. Recent Advances in Analytical Techniques, 2018, , 173-207.	0.5	1
35	Adsorption of solophenyl red 3BL polyazo dye onto amine-functionalized mesoporous carbons. Journal of Colloid and Interface Science, 2017, 505, 593-604.	9.4	43
36	APTES-functionalized mesoporous silica as a vehicle for antipyrine – adsorption and release studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 187-196.	4.7	52

JOANNA GOSCIANSKA

#	Article	IF	CITATIONS
37	Impact of Zr Incorporation into the Ni/AlSBA-15 Catalyst on Its Activity in Cellulose Conversion to Hydrogen-Rich Gas. Energy & Fuels, 2017, 31, 14089-14096.	5.1	10
38	Adsorption of dyes on the surface of polymer nanocomposites modified with methylamine and copper(II) chloride. Journal of Colloid and Interface Science, 2017, 504, 549-560.	9.4	33
39	In vivo studies of substances used in the cosmetic industry. Postepy Dermatologii I Alergologii, 2016, 3, 163-169.	0.9	5
40	Sorptive properties of aluminium ions containing mesoporous silica towards l-histidine. Adsorption, 2016, 22, 571-579.	3.0	13
41	Mesoporous silicas as supports for Ni catalyst used in cellulose conversion to hydrogen rich gas. International Journal of Hydrogen Energy, 2016, 41, 8656-8667.	7.1	29
42	β-Cyclodextrin complexation as an effective drug delivery system for meropenem. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 99, 24-34.	4.3	44
43	Stability analysis of functionalized mesoporous carbon materials in aqueous solution. Chemical Engineering Journal, 2016, 290, 209-219.	12.7	35
44	The effect of surface modification of mesoporous carbons on Auramine-O dye removal from water. Adsorption, 2016, 22, 531-540.	3.0	27
45	Polymer nanocomposites as new adsorbents of dyes from the liquid phase Nanokompozyty polimerowe jako nowe adsorbenty barwników z fazy ciekÅ,ej. Przemysl Chemiczny, 2016, 1, 97-100.	0.0	0
46	Complex of Rutin with \hat{I}^2 -Cyclodextrin as Potential Delivery System. PLoS ONE, 2015, 10, e0120858.	2.5	50
47	Equilibrium and kinetic studies of chromotrope 2R adsorption onto ordered mesoporous carbons modified with lanthanum. Chemical Engineering Journal, 2015, 270, 140-149.	12.7	37
48	Removal of tartrazine from aqueous solution by carbon nanotubes decorated with silver nanoparticles. Catalysis Today, 2015, 249, 259-264.	4.4	57
49	Stability determination of the formulations containing hyaluronic acid. International Journal of Cosmetic Science, 2015, 37, 401-407.	2.6	23
50	Ordered mesoporous silica modified with lanthanum for ibuprofen loading and release behaviour. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 550-558.	4.3	49
51	Ordered mesoporous carbons modified with cerium as effective adsorbents for azo dyes removal. Separation and Purification Technology, 2015, 154, 236-245.	7.9	62
52	Comparison of the effects of different chemical activation methods on properties of carbonaceous adsorbents obtained from cherry stones. Chemical Engineering Research and Design, 2014, 92, 1187-1191.	5.6	49
53	Adsorption of l-phenylalanine on ordered mesoporous carbons prepared by hard template method. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 347-353.	5.3	29
54	Mesoporous carbons modified with lanthanum(III) chloride for methyl orange adsorption. Chemical Engineering Journal, 2014, 247, 258-264.	12.7	114

JOANNA GOSCIANSKA

#	Article	IF	CITATIONS
55	Physicochemical and sorption properties of multi-walled carbon nanotubes decorated with silver nanoparticles. Chemical Engineering Journal, 2014, 250, 295-302.	12.7	11
56	Comparison of ordered mesoporous materials sorption properties towards amino acids. Adsorption, 2013, 19, 581-588.	3.0	22
57	Adsorption of l-phenylalanine onto mesoporous silica. Materials Chemistry and Physics, 2013, 142, 586-593.	4.0	35
58	In vitro release of l-phenylalanine from ordered mesoporous materials. Microporous and Mesoporous Materials, 2013, 177, 32-36.	4.4	18
59	Thermal analysis of activated carbons modified with silver metavanadate. Thermochimica Acta, 2012, 541, 42-48.	2.7	11
60	Active Compounds Release from Semisolid Dosage Forms. Journal of Pharmaceutical Sciences, 2012, 101, 4032-4045.	3.3	55
61	The influence of silver on the physicochemical and catalytic properties of activated carbons. Chemical Engineering Journal, 2012, 189-190, 422-430.	12.7	14
62	Novel mesoporous zirconia-based catalysts for WGS reaction. Applied Catalysis B: Environmental, 2010, 97, 49-56.	20.2	27
63	Meso–macroporous zirconia modified with niobia as support for platinum—Acidic and basic properties. Catalysis Today, 2010, 152, 33-41.	4.4	34
64	The effect of zirconium and niobium oxidic species on platinum dispersion in 1%Pt/Nb,Zr-containing MCM-41. Catalysis Today, 2009, 142, 298-302.	4.4	5
65	Adsorption and interaction of NO, C3H6 and O2 on Pt, Zr, Nb-MCM-41—FTIR study. Catalysis Today, 2008, 137, 197-202.	4.4	8
66	New MCF type supports for platinum — characterization of Pt/MCF and Pt/NbMCF and comparison with Pt/MCM-41. Studies in Surface Science and Catalysis, 2008, 174, 357-360.	1.5	1
67	Novel thermal stable (Zr, Nb)MCM-41 supports for platinum. Studies in Surface Science and Catalysis, 2007, 170, 1870-1876.	1.5	4
68	Zirconium species created within the mesopores of MCM-41 and NbMCM-41. Studies in Surface Science and Catalysis, 2007, 165, 215-218.	1.5	4
69	Pt and Nb species on various supports: An alternative to current materials for NOx removal. Catalysis Today, 2007, 119, 78-82.	4.4	9
70	WGS and reforming properties of NbMCM-41 materials. Catalysis Today, 2006, 114, 281-286.	4.4	11
71	Adsorption and electrokinetic studies of sodalite/lithium/poly(acrylic acid) aqueous system. Physicochemical Problems of Mineral Processing, 0, , 158-166.	0.4	4