Magdalena Ruiz-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4407870/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 123-130.	2.6	147
2	Characterization of Antimicrobial Substances Produced by Enterococcus faecalis MRR 10-3, Isolated from the Uropygial Gland of the Hoopoe (Upupa epops). Applied and Environmental Microbiology, 2006, 72, 4245-4249.	3.1	112
3	Symbiotic association between hoopoes and antibioticâ€producing bacteria that live in their uropygial gland. Functional Ecology, 2008, 22, 864-871.	3.6	108
4	Symbiotic bacteria living in the hoopoe's uropygial gland prevent feather degradation. Journal of Experimental Biology, 2009, 212, 3621-3626.	1.7	96
5	Seasonal, sexual and developmental differences in hoopoe <i>Upupa epops</i> preen gland morphology and secretions: evidence for a role of bacteria. Journal of Avian Biology, 2009, 40, 191-205.	1.2	85
6	Antibiotic-Producing Bacteria as a Possible Defence of Birds against Pathogenic Microorganisms. Open Ornithology Journal, 2010, 3, 93-100.	0.4	73
7	Special structures of hoopoe eggshells enhance the adhesion of symbiontâ€carrying uropygial secretion that increase hatching success. Journal of Animal Ecology, 2014, 83, 1289-1301.	2.8	54
8	Bacteriocins with a broader antimicrobial spectrum prevail in enterococcal symbionts isolated from the hoopoe's uropygial gland. FEMS Microbiology Ecology, 2013, 85, 495-502.	2.7	49
9	Differences in intestinal microbiota between avian brood parasites and their hosts. Biological Journal of the Linnean Society, 0, 96, 406-414.	1.6	39
10	Nest Material Shapes Eggs Bacterial Environment. PLoS ONE, 2016, 11, e0148894.	2.5	39
11	Female-biased size dimorphism in a diapausing caddisfly, Mesophylax aspersus: effect of fecundity and natural and sexual selection. Ecological Entomology, 2011, 36, 389-395.	2.2	37
12	Antimicrobial Activity and Genetic Profile of Enteroccoci Isolated from Hoopoes Uropygial Gland. PLoS ONE, 2012, 7, e41843.	2.5	36
13	Avian life history traits influence eggshell bacterial loads: a comparative analysis. Ibis, 2012, 154, 725-737.	1.9	33
14	Telomere length and dynamics of spotless starling nestlings depend on nest-building materials used by parents. Animal Behaviour, 2017, 126, 89-100.	1.9	31
15	Bacteria and the evolution of honest signals. The case of ornamental throat feathers in spotless starlings. Functional Ecology, 2015, 29, 701-709.	3.6	30
16	Bacterial diversity at the cloaca relates to an immune response in magpie <i>Pica pica</i> and to body condition of great spotted cuckoo <i>Clamator glandarius</i> nestlings. Journal of Avian Biology, 2009, 40, 42-48.	1.2	29
17	The Hoopoe's Uropygial Gland Hosts a Bacterial Community Influenced by the Living Conditions of the Bird. PLoS ONE, 2015, 10, e0139734.	2.5	29
18	Relative importance of factors affecting nestling immune response differs between junior and senior nestlings within broods of hoopoes Upupa epops. Journal of Avian Biology, 2006, 37, 467-476.	1.2	27

#	Article	IF	CITATIONS
19	Habitatâ€specific effects of a food supplementation experiment on immunocompetence in Eurasian Magpie <i>Pica pica</i> nestlings. Ibis, 2007, 149, 763-773.	1.9	26
20	Environmental Factors Shape the Community of Symbionts in the Hoopoe Uropygial Gland More than Genetic Factors. Applied and Environmental Microbiology, 2014, 80, 6714-6723.	3.1	25
21	Host Species and Body Site Explain the Variation in the Microbiota Associated to Wild Sympatric Mediterranean Teleost Fishes. Microbial Ecology, 2020, 80, 212-222.	2.8	25
22	Does avian conspicuous colouration increase or reduce predation risk?. Oecologia, 2013, 173, 83-93.	2.0	23
23	Climatic conditions, diapause and migration in a troglophile caddisfly. Freshwater Biology, 2008, 53, 1606-1617.	2.4	21
24	The mucous covering of fecal sacs prevents birds from infection with enteric bacteria. Journal of Avian Biology, 2014, 45, 354-358.	1.2	18
25	Gut Microbiota of Great Spotted Cuckoo Nestlings is a Mixture of Those of Their Foster Magpie Siblings and of Cuckoo Adults. Genes, 2018, 9, 381.	2.4	18
26	Laying date, incubation and egg breakage as determinants of bacterial load on bird eggshells: experimental evidence. Oecologia, 2015, 179, 63-74.	2.0	16
27	Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings. Microbial Ecology, 2018, 76, 285-297.	2.8	16
28	Experimentally broken faecal sacs affect nest bacterial environment, development and survival of spotless starling nestlings. Journal of Avian Biology, 2019, 50, .	1.2	13
29	The Microbiome of the Uropygial Secretion in Hoopoes Is Shaped Along the Nesting Phase. Microbial Ecology, 2016, 72, 252-261.	2.8	12
30	Egg colouration predicts brood size, telomere length and body condition of spotless starling fledglings. Journal of Avian Biology, 2018, 49, jav-012512.	1.2	12
31	Antimicrobial activity of nest-lining feathers is enhanced by breeding activity in avian nests. FEMS Microbiology Ecology, 2019, 95, .	2.7	12
32	Telomere dynamics in parasitic great spotted cuckoos and their magpie hosts. Journal of Evolutionary Biology, 2015, 28, 1610-1617.	1.7	9
33	Nest material preferences by spotless starlings. Behavioral Ecology, 2018, 29, 137-144.	2.2	9
34	Interspecific variation in deterioration and degradability of avian feathers: the evolutionary role of microorganisms. Journal of Avian Biology, 2020, 51, .	1.2	7
35	Do climatic conditions affect host and parasite phenotypes differentially? A case study of magpies and great spotted cuckoos. Oecologia, 2014, 174, 327-338.	2.0	6
36	Multiâ€functional crest display in hoopoes <i>Upupa epops</i> . Journal of Avian Biology, 2017, 48, 1425-1431.	1.2	5

#	Article	IF	CITATIONS
37	Smaller distance between nest contents and cavity entrance increases risk of ectoparasitism in cavityâ€nesting birds. Journal of Avian Biology, 2020, 51, .	1.2	5
38	Ornamental Throat Feathers Predict Telomere Dynamic and Hatching Success in Spotless Starling (Sturnus unicolor) Males. Frontiers in Ecology and Evolution, 2020, 7, .	2.2	5
39	Intraspecific avian brood parasites avoid host nests infested by ectoparasites. Journal of Ornithology, 2017, 158, 561-567.	1.1	4
40	Defenses against keratinolytic bacteria in birds living in radioactively contaminated areas. Die Naturwissenschaften, 2016, 103, 71.	1.6	3
41	Beak coloration of starling (Sturnus unicolor) males depends on the length of their throat feathers. Behavioral Ecology, 2020, 31, 933-942.	2.2	1
42	Capacity of blood plasma is higher in birds breeding in radioactively contaminated areas. PLoS ONE, 2017, 12, e0179209.	2.5	1
43	Antimicrobial capacity is related to body colouration and reproductive success in female spotless starlings. Journal of Avian Biology, 2020, 51, .	1.2	Ο