Yuru Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4407847/yuru-wang-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10 872 9 10 g-index

10 1,102 9.2 4.42 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
10	Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. <i>Environmental Science & Environmental Science & Envir</i>	10.3	448
9	Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process. <i>Environmental Science & Environmental Science </i>	10.3	109
8	Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin. <i>Separation and Purification Technology</i> , 2019 , 212, 536-544	8.3	83
7	Chlorate Formation Mechanism in the Presence of Sulfate Radical, Chloride, Bromide and Natural Organic Matter. <i>Environmental Science & Environmental </i>	10.3	72
6	Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/HO and UV/persulfate systems: Kinetics, mechanisms, and comparison. <i>Chemosphere</i> , 2020 , 253, 126655	8.4	48
5	Adsorption and Removal of a Xanthene Dye from Aqueous Solution Using Two Solid Wastes as Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 8734-8741	3.9	42
4	Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents. <i>Journal of Environmental Sciences</i> , 2013 , 25, 2291-8	6.4	40
3	Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation. <i>Water Research</i> , 2020 , 172, 115463	12.5	15
2	Adsorption, desorption and coadsorption behaviors of sulfamerazine, Pb(II) and benzoic acid on carbon nanotubes and nano-silica. <i>Science of the Total Environment</i> , 2020 , 738, 139685	10.2	13
1	Impact of EfOM in the elimination of PPCPs by UV/chlorine: Radical chemistry and toxicity bioassays. <i>Water Research</i> , 2021 , 204, 117634	12.5	2