
Gennady A Kovaltsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4407674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effective Energy of Cosmogenic Isotope (¹⁰ Be, ¹⁴ C and ³⁶ Cl) Production by Solar Energetic Particles and Galactic Cosmic Rays. Journal of Geophysical Research: Space Physics, 2022, 127, e2021JA029919.	2.4	8
2	Robustness of Solar-Cycle Empirical Rules Across Different Series Including an Updated Active-Day Fraction (ADF) Sunspot Group Series. Solar Physics, 2021, 296, 1.	2.5	20
3	Mind the Gap: New Precise ¹⁴ C Data Indicate the Nature of Extreme Solar Particle Events. Geophysical Research Letters, 2021, 48, e2021GL094848.	4.0	18
4	Application of CCM SOCOL-AERv2-BE to cosmogenic beryllium isotopes: description and validation for polar regions. Geoscientific Model Development, 2021, 14, 7605-7620.	3.6	7
5	Revisited Reference Solar Proton Event of 23 February 1956: Assessment of the Cosmogenicâ€Isotope Method Sensitivity to Extreme Solar Events. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027921.	2.4	31
6	Updated Neutronâ€Monitor Yield Function: Bridging Between In Situ and Groundâ€Based Cosmic Ray Measurements. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027433.	2.4	33
7	New Method of Assessment of the Integral Fluence of Solar Energetic (> 1 GV Rigidity) Particles from Neutron Monitor Data. Solar Physics, 2019, 294, 1.	2.5	19
8	Validation of the Neutron Monitor Yield Function Using Data From AMSâ€02 Experiment, 2011–2017. Journal of Geophysical Research: Space Physics, 2019, 124, 2367-2379.	2.4	36
9	An Anisotropic Cosmic-Ray Enhancement Event on 07-June-2015: A Possible Origin. Solar Physics, 2018, 293, 1.	2.5	12
10	A Solar Cycle of Cosmic Ray Fluxes for 2006–2014: Comparison between PAMELA and Neutron Monitors. Journal of Geophysical Research: Space Physics, 2018, 123, 4479-4487.	2.4	10
11	Effective Rigidity of a Polar Neutron Monitor for Recording Ground-Level Enhancements. Solar Physics, 2018, 293, 1.	2.5	10
12	Heliospheric modulation of cosmic rays during the neutron monitor era: Calibration using PAMELA data for 2006–2010. Journal of Geophysical Research: Space Physics, 2017, 122, 3875-3887.	2.4	107
13	Atmospheric impacts of the strongest known solar particle storm of 775 AD. Scientific Reports, 2017, 7, 45257.	3.3	54
14	Neutron Monitors and Cosmogenic Isotopes as Cosmic Ray Energyâ€Integration Detectors: Effective Yield Functions, Effective Energy, and Its Dependence on the Local Interstellar Spectrum. Journal of Geophysical Research: Space Physics, 2017, 122, 9790-9802.	2.4	28
15	New reconstruction of the sunspot group numbers since 1739 using direct calibration and "backbone― methods. Astronomy and Astrophysics, 2017, 602, A69.	5.1	70
16	The Maunder minimum (1645–1715) was indeed a grand minimum: A reassessment of multiple datasets. Astronomy and Astrophysics, 2015, 581, A95.	5.1	158
17	Can we properly model the neutron monitor count rate?. Journal of Geophysical Research: Space Physics, 2015, 120, 7172-7178.	2.4	39
18	Solar Cycle in the Heliosphere and Cosmic Rays. Space Science Reviews, 2014, 186, 409-435.	8.1	34

#	Article	IF	CITATIONS
19	OCCURRENCE OF EXTREME SOLAR PARTICLE EVENTS: ASSESSMENT FROM HISTORICAL PROXY DATA. Astrophysical Journal, 2012, 757, 92.	4.5	97
20	A new model of cosmogenic production of radiocarbon 14C in the atmosphere. Earth and Planetary Science Letters, 2012, 337-338, 114-120.	4.4	118
21	Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	230
22	A SOLAR CYCLE LOST IN 1793-1800: EARLY SUNSPOT OBSERVATIONS RESOLVE THE OLD MYSTERY. Astrophysical Journal, 2009, 700, L154-L157.	4.5	81
23	Dynamics of the Earth's Particle Radiation Environment. Space Science Reviews, 2009, 147, 187-231.	8.1	160
24	On the common solar signal in different cosmogenic isotope data sets. Journal of Geophysical Research, 2009, 114, .	3.3	45
25	Solar proton events in cosmogenic isotope data. Geophysical Research Letters, 2006, 33, .	4.0	67
26	Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004. Journal of Geophysical Research, 2005, 110, .	3.3	352