
Sergey I Kurganskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4407670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic structure and K-edge X-ray absorption of iron monosilicide. Journal of Physics: Conference Series, 2021, 1902, 012139.	0.3	1
2	Oscillating fine structure of x-ray absorption and atomic structure of metallic layers in a magnetic multilayer nanostructure (Đ¡o45Fe45Zr10/SiO2)n. Materials Research Express, 2019, 6, 1150g9.	0.8	2
3	Application of computer simulation for research of spatial structure, growth, and electronic properties of zero-dimensional structures on example of silicon-niobium anionic clusters. Journal of Physics: Conference Series, 2019, 1203, 012056.	0.3	2
4	Electronic structure of stishovite SiO ₂ . Journal of Physics: Conference Series, 2019, 1352, 012032.	0.3	1
5	Atomic Structure and Electronic Properties of Anionic Germanium–Zirconium Clusters. Inorganic Materials, 2018, 54, 1-7.	0.2	17
6	Electronic Structure of Four-Element Clathrates of the Ba–Zn–Si–Ge System. Semiconductors, 2018, 52, 282-286.	0.2	1
7	Anionic Germanium–Niobium Clusters: Atomic Structure, Mechanisms of Cluster Formation, and Electronic Spectra. Russian Journal of Physical Chemistry A, 2018, 92, 1720-1726.	0.1	7
8	Spatial Structure, Electron Energy Spectrum, and Growth of HfSi n â^' Clusters (n = 6–20). Russian Journal of Inorganic Chemistry, 2018, 63, 1062-1068.	0.3	3
9	Ab initio calculation and synchrotron X-ray spectroscopy investigations of tin oxides near the Sn L 3 absorption edges. Physics of the Solid State, 2016, 58, 2379-2384.	0.2	1
10	The electronic structure peculiarities of a strained silicon layer in silicon-on-insulator: Experimental and theoretical data. Applied Surface Science, 2016, 382, 331-335.	3.1	1
11	A novel approach to the electronic structure and surface composition investigations of tin-oxygen system materials by means of X-ray absorption spectroscopy combined with ab initio calculations. Computational Materials Science, 2016, 121, 119-123.	1.4	17
12	Spatial structure and electron energy spectrum of HfGe n – (n = 6–20) clusters. Inorganic Materials, 2015, 51, 870-876.	0.2	6
13	Spatial structure and electron energy spectra of ScGe n â^' (n = 6–16) clusters. Russian Journal of Physical Chemistry B, 2015, 9, 9-18.	0.2	12
14	Spatial and electronic structures of the germanium-tantalum clusters TaGe n â^' (n = 8–17). Physics of the Solid State, 2014, 56, 2336-2342.	0.2	8
15	Geometric structure, electron-energy spectrum, and growth of anionic scandium-silicon clusters ScSin- (n = 6–20). Journal of Applied Physics, 2014, 116, 124302.	1.1	11
16	Theoretical and experimental study of the electronic structure of tin dioxide. Physics of the Solid State, 2014, 56, 1748-1753.	0.2	16
17	Spatial structure and electronic spectrum of TiSi n â^' clusters (n = 6–18). Russian Journal of Physical Chemistry A, 2014, 88, 1712-1718.	0.1	3
18	Geometric structure and electron spectrum of YSi n â^' clusters (n = 6–17). Physics of the Solid State, 2014, 56, 1276-1281.	0.2	4

SERGEY I KURGANSKII

#	Article	IF	CITATIONS
19	Electron energy spectrum in silicon-based Pd-substituted clathrate crystals. Physics of the Solid State, 2012, 54, 255-260.	0.2	0
20	Electronic structure and spectral characteristics of Zn-substituted clathrate silicides. Semiconductors, 2011, 45, 713-723.	0.2	12
21	Power consumption reduction for configuration SRAM of field programmable gate arrays. , 2011, , .		Ο
22	Electron structure and spectral characteristics of Cd-substituted Ge-based clathrates. Semiconductors, 2010, 44, 987-992.	0.2	1
23	Investigation of properties of 36-bit adders for creation of DSP blocks on FPGA. , 2010, , .		1
24	Electronic structure of Zn-substituted germanium clathrates. Semiconductors, 2009, 43, 563-567.	0.2	13
25	Quantum-chemical modeling of the structure of strained silicon nanocrystals on a germanium substrate. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72, 1245-1247.	0.1	0
26	Quantum chemical modeling of the structure of strained silicon nanocrystals. Journal of Structural Chemistry, 2007, 48, 960-963.	0.3	0
27	Atomic and electronic structure of the silicon and silicon-metal Si20, Si 20 â^' , NaSi20, KSi20 nanoparticles. Semiconductors, 2006, 40, 1423-1428.	0.2	5
28	Influence of the special features of atomic structure of Si24 and MeSi24 (Me = Na or K) nanoparticles on their electron properties. Russian Physics Journal, 2006, 49, 170-176.	0.2	1
29	Theoretical photoelectronic spectra of molybdenum, tungsten, and rhenium disilicides. Russian Physics Journal, 2006, 49, 766-771.	0.2	0
30	Electronic Structure and Spectral Properties of Si[sub 46] and Na[sub 8]Si[sub 46] Clathrates. Semiconductors, 2005, 39, 1176.	0.2	10
31	Geometric structure and spectral characteristics of electronic states in silicon nanoparticles. Semiconductors, 2004, 38, 560-564.	0.2	1
32	Fermi surface and electrical characteristics of molybdenum disilicide. Physics of the Solid State, 2003, 45, 201-206.	0.2	4
33	Electronic structure of rhenium disilicides. Journal of Physics Condensed Matter, 2002, 14, 6833-6839.	0.7	11
34	Electronic structure of FeSi2. Physics of the Solid State, 2002, 44, 704-708.	0.2	7
35	Theoretical photoemission and X-ray emission spectra of nickel and cobalt disilicide films. Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 549-554.	0.8	1
36	Electronic structure of cobalt disilicide film. Physics of the Solid State, 2000, 42, 1542-1547.	0.2	3

SERGEY I KURGANSKII

#	Article	IF	CITATIONS
37	Electronic structure and spectral properties of nickel disilicide films. Physics of the Solid State, 1999, 41, 1906-1910.	0.2	1
38	Density-functional calculations of static and dynamic polarizabilities of thready cylindrical crystals. Surface Science, 1999, 421, 237-245.	0.8	2
39	Electronic structure and spectral characteristics of Bi-Sr-Ca-Cu-O films. Journal of Structural Chemistry, 1998, 39, 876-883.	0.3	0
40	Photoelectron spectra of thin films of the high-T c superconductor YBa2Cu3O7â^'δ. Physics of the Solid State, 1997, 39, 378-380.	0.2	0
41	Calculated Spectral Properties of YBa2Cu3O7?? Thin Films. Physica Status Solidi (B): Basic Research, 1997, 201, 417-428.	0.7	2
42	Electronic structure and chemical bonding of superconductor YBa2Cu3O7â^'x. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 715-718.	0.8	6
43	Theoretical Xâ€ray Emission Study of High―‹i>T _c Superconductor YBa ₂ Cu ₃ O ₇ Thin Films. Physica Status Solidi (B): Basic Research, 1994, 185, 179-187.	0.7	4
44	Nonâ€Relativistic and Scalarâ€Relativistic LAPW Electronic Energy Bands of (001) Cu Films. Physica Status Solidi (B): Basic Research, 1990, 161, 697-703.	0.7	2
45	Integration over the Twoâ€Dimensional Brillouin Zone. Physica Status Solidi (B): Basic Research, 1985, 129, 293-299.	0.7	16
46	Problems of the OPW Method III. Rare Earths. Physica Status Solidi (B): Basic Research, 1981, 106, 437-445.	0.7	5
47	Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS. Physica Status Solidi (B): Basic Research, 1980, 97, 631-640.	0.7	18
48	Problems of the OPW method. I. Transition metals. Physica Status Solidi (B): Basic Research, 1979, 94, 51-62.	0.7	8