
Qilong Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4407398/publications.pdf Version: 2024-02-01

OILONG REN

#	Article	IF	CITATIONS
1	Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science, 2016, 353, 141-144.	6.0	1,088
2	Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy and Environmental Science, 2016, 9, 3612-3641.	15.6	530
3	Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. Journal of Colloid and Interface Science, 2011, 353, 549-556.	5.0	426
4	An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity. Advanced Materials, 2017, 29, 1704210.	11.1	310
5	Adsorption of Ethane, Ethylene, Propane, and Propylene on a Magnesium-Based Metal–Organic Framework. Langmuir, 2011, 27, 13554-13562.	1.6	287
6	Molecular Sieving of Ethane from Ethylene through the Molecular Crossâ€Section Size Differentiation in Gallateâ€based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 16020-16025.	7.2	202
7	Ultrahigh and Selective SO ₂ Uptake in Inorganic Anionâ€Pillared Hybrid Porous Materials. Advanced Materials, 2017, 29, 1606929.	11.1	183
8	Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations. Journal of the American Chemical Society, 2018, 140, 4596-4603.	6.6	181
9	A Robust Squarate-Based Metal–Organic Framework Demonstrates Record-High Affinity and Selectivity for Xenon over Krypton. Journal of the American Chemical Society, 2019, 141, 9358-9364.	6.6	162
10	Immobilization of Ag(<scp>i</scp>) into a metal–organic framework with –SO ₃ H sites for highly selective olefin–paraffin separation at room temperature. Chemical Communications, 2015, 51, 2859-2862.	2.2	160
11	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Size‣ieving. Angewandte Chemie - International Edition, 2017, 56, 16282-16287.	7.2	146
12	Inverse Adsorption Separation of CO ₂ /C ₂ H ₂ Mixture in Cyclodextrin-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 2543-2550.	4.0	134
13	A Singleâ€Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anionâ€Pillared Ultramicroporous Materials. Advanced Materials, 2018, 30, 1705374.	11.1	133
14	Efficient Synthesis of Cyclic Carbonates from Atmospheric CO ₂ Using a Positive Charge Delocalized Ionic Liquid Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 2841-2846.	3.2	116
15	Deep Desulfurization with Record SO ₂ Adsorption on the Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9040-9047.	6.6	108
16	Catalytic dehydration of glucose to 5â€hydroxymethylfurfural with a bifunctional metalâ€organic framework. AICHE Journal, 2016, 62, 4403-4417.	1.8	104
17	Kinetic separation of carbon dioxide and methane on a copper metal–organic framework. Journal of Colloid and Interface Science, 2011, 357, 504-509.	5.0	103
18	Hybrid Deep Eutectic Solvents with Flexible Hydrogenâ€Bonded Supramolecular Networks for Highly Efficient Uptake of NH ₃ . ChemSusChem, 2017, 10, 3368-3377.	3.6	99

#	Article	IF	CITATIONS
19	Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents. Green Chemistry, 2016, 18, 157-164.	4.6	96
20	Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-Mercury Catalysts for Hydrochlorination of Acetylene. ACS Catalysis, 2015, 5, 6724-6731.	5.5	94
21	Highly efficient separation of methane from nitrogen on a squarateâ€based metalâ€organic framework. AICHE Journal, 2018, 64, 3681-3689.	1.8	94
22	Discrimination of xylene isomers in a stacked coordination polymer. Science, 2022, 377, 335-339.	6.0	94
23	Improved separation efficiency using ionic liquid–cosolvent mixtures as the extractant in liquid–liquid extraction: A multiple adjustment and synergistic effect. Chemical Engineering Journal, 2012, 181-182, 334-342.	6.6	93
24	Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Sizeâ€Sieving. Angewandte Chemie - International Edition, 2020, 59, 3423-3428.	7.2	91
25	An Asymmetric Anionâ€Pillared Metal–Organic Framework as a Multisite Adsorbent Enables Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie - International Edition, 2018, 57, 13145-13149.	7.2	85
26	Simultaneous interlayer and intralayer space control in two-dimensional metalâ^'organic frameworks for acetylene/ethylene separation. Nature Communications, 2020, 11, 6259.	5.8	85
27	Fabrication of cuprous nanoparticles in MIL-101: an efficient adsorbent for the separation of olefin–paraffin mixtures. RSC Advances, 2014, 4, 20230-20233.	1.7	79
28	Design and screening of ionic liquids for C ₂ H ₂ /C ₂ H ₄ separation by COSMOâ€RS and experiments. AICHE Journal, 2015, 61, 2016-2027.	1.8	77
29	New Insights into CO ₂ Absorption Mechanisms with Aminoâ€Acid Ionic Liquids. ChemSusChem, 2016, 9, 806-812.	3.6	77
30	A calcium-based microporous metal-organic framework for efficient adsorption separation of light hydrocarbons. Chemical Engineering Journal, 2019, 358, 446-455.	6.6	75
31	Selective Separation of Tocopherol Homologues by Liquidâ^'Liquid Extraction Using Ionic Liquids. Industrial & Engineering Chemistry Research, 2009, 48, 6417-6422.	1.8	74
32	Adsorption Equilibria of CO ₂ , CH ₄ , N ₂ , O ₂ , and Ar on High Silica Zeolites. Journal of Chemical & Engineering Data, 2011, 56, 4017-4023.	1.0	73
33	Long-Chain Fatty Acid-Based Phosphonium Ionic Liquids with Strong Hydrogen-Bond Basicity and Good Lipophilicity: Synthesis, Characterization, and Application in Extraction. ACS Sustainable Chemistry and Engineering, 2015, 3, 309-316.	3.2	73
34	Molecular Sieving of Ethane from Ethylene through the Molecular Crossâ€Section Size Differentiation in Gallateâ€based Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 16252-16257.	1.6	72
35	Molecular Sieving of C ₂ ₃ Alkene from Alkyne with Tuned Threshold Pressure in Robust Layered Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 12725-12730.	7.2	72
36	Engineering the Pore Size of Pillared-Layer Coordination Polymers Enables Highly Efficient Adsorption Separation of Acetylene from Ethylene. ACS Applied Materials & Interfaces, 2019, 11, 28197-28204.	4.0	71

#	Article	IF	CITATIONS
37	Fabrication of plasmonic Au–Pd alloy nanoparticles for photocatalytic Suzuki–Miyaura reactions under ambient conditions. Nanoscale, 2017, 9, 6026-6032.	2.8	70
38	M-Gallate (M = Ni, Co) Metal–Organic Framework-Derived Ni/C and Bimetallic Ni–Co/C Catalysts for Lignin Conversion into Monophenols. ACS Sustainable Chemistry and Engineering, 2019, 7, 12955-12963.	3.2	69
39	Entrainer-intensified vacuum reactive distillation process for the separation of 5-hydroxylmethylfurfural from the dehydration of carbohydrates catalyzed by a metal salt–ionic liquid. Green Chemistry, 2012, 14, 1220.	4.6	66
40	Insight into the catalytic properties and applications of metal–organic frameworks in the cyanosilylation of aldehydes. RSC Advances, 2015, 5, 79355-79360.	1.7	65
41	Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Size‧ieving. Angewandte Chemie, 2020, 132, 3451-3456.	1.6	63
42	Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metalâ€organic framework. AICHE Journal, 2017, 63, 2165-2175.	1.8	62
43	Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catalysis Communications, 2008, 9, 1307-1311.	1.6	61
44	The essential role of hydrogenâ€bonding interaction in the extractive separation of phenolic compounds by ionic liquid. AICHE Journal, 2013, 59, 1657-1667.	1.8	57
45	Aqueous Biphasic System Containing Long Chain Anion-Functionalized Ionic Liquids for High-Performance Extraction. ACS Sustainable Chemistry and Engineering, 2015, 3, 3365-3372.	3.2	56
46	Tunable Confined Aliphatic Pore Environment in Robust Metal–Organic Frameworks for Efficient Separation of Gases with a Similar Structure. Journal of the American Chemical Society, 2022, 144, 14322-14329.	6.6	56
47	Synthesis of anion-functionalized mesoporous poly(ionic liquid)s via a microphase separation-hypercrosslinking strategy: highly efficient adsorbents for bioactive molecules. Journal of Materials Chemistry A, 2017, 5, 14114-14123.	5.2	54
48	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie - International Edition, 2021, 60, 2431-2438.	7.2	53
49	Recent Advances in Separation of Bioactive Natural Products. Chinese Journal of Chemical Engineering, 2013, 21, 937-952.	1.7	48
50	Highly efficient treatment of textile dyeing sludge by CO2 thermal plasma gasification. Waste Management, 2019, 90, 29-36.	3.7	47
51	Performance Comparison of Metal–Organic Framework Extrudates and Commercial Zeolite for Ethylene/Ethane Separation. Industrial & Engineering Chemistry Research, 2018, 57, 1645-1654.	1.8	45
52	Supramolecular Metal–Organic Framework for CO ₂ /CH ₄ and CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2020, 59, 7866-7874.	1.8	42
53	Selective Liquid–Liquid Extraction of Natural Phenolic Compounds Using Amino Acid Ionic Liquids: A Case of α-Tocopherol and Methyl Linoleate Separation. Industrial & Engineering Chemistry Research, 2012, 51, 6480-6488.	1.8	41
54	Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Sizeâ€5ieving. Angewandte Chemie, 2017, 129, 16500-16505.	1.6	41

#	Article	IF	CITATIONS
55	Rapid quantification and characterization of soyasaponins by high-performance liquid chromatography coupled with electrospray mass spectrometry. Journal of Chromatography A, 2006, 1108, 31-37.	1.8	40
56	Design and Synthesis of Thermoresponsive Ionic Liquid Polymer in Acetonitrile as a Reusable Extractant for Separation of Tocopherol Homologues. Macromolecules, 2015, 48, 915-924.	2.2	40
57	Enhanced solubilization and extraction of hydrophobic bioactive compounds using water/ionic liquid mixtures. Green Chemistry, 2016, 18, 3549-3557.	4.6	40
58	Adsorptive Separation of Geometric Isomers of 2-Butene on Gallate-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 9609-9616.	4.0	38
59	Functionalized Metal–Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines. ACS Applied Materials & Interfaces, 2017, 9, 9772-9777.	4.0	37
60	Hydrogenâ€Bonded Metal–Nucleobase Frameworks for Efficient Separation of Xenon and Krypton. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
61	Volumetric Properties of Binary Mixtures of 1-Butyl-3-methylimidazolium Chloride + Water or Hydrophilic Solvents at Different Temperatures. Journal of Chemical & Engineering Data, 2010, 55, 1750-1754.	1.0	34
62	An Asymmetric Anionâ€Pillared Metal–Organic Framework as a Multisite Adsorbent Enables Simultaneous Removal of Propyne and Propadiene from Propylene. Angewandte Chemie, 2018, 130, 13329-13333.	1.6	34
63	Calcium-Based Metal–Organic Framework for Simultaneous Capture of Trace Propyne and Propadiene from Propylene. ACS Applied Materials & Interfaces, 2020, 12, 17147-17154.	4.0	34
64	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
65	Enantioseparation of paroxetine intermediate on an amylose-derived chiral stationary phase by supercritical fluid chromatography. Journal of Chromatography A, 2009, 1216, 5140-5146.	1.8	33
66	Selective Extraction of 1-Hexene Against <i>n</i> -Hexane in Ionic Liquids with or without Silver Salt. Industrial & Engineering Chemistry Research, 2012, 51, 8588-8597.	1.8	33
67	Separation of Soybean Isoflavone Aglycone Homologues by Ionic Liquid-Based Extraction. Journal of Agricultural and Food Chemistry, 2012, 60, 3432-3440.	2.4	32
68	Role of Hydrogen Bonds in Ionic-Liquid-Mediated Extraction of Natural Bioactive Homologues. Industrial & Engineering Chemistry Research, 2012, 51, 5299-5308.	1.8	29
69	Nonaqueous Lyotropic Ionic Liquid Crystals: Preparation, Characterization, and Application in Extraction. Chemistry - A European Journal, 2015, 21, 9150-9156.	1.7	29
70	Deciphering a Reaction Network for the Switchable Production of Tetrahydroquinoline or Quinoline with MOF-Supported Pd Tandem Catalysts. ACS Catalysis, 2020, 10, 5707-5714.	5.5	29
71	Adsorptive Separation of Acetylene from Ethylene in Isostructural Gallateâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 15516-15524.	1.7	27
72	Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. ACS Applied Materials & Interfaces, 2020, 12, 23002-23009.	4.0	27

#	Article	IF	CITATIONS
73	High performance separation of sparingly aqua-/lipo-soluble bioactive compounds with an ionic liquid-based biphasic system. Green Chemistry, 2012, 14, 2617.	4.6	26
74	Solubilities of Dodecylpolyoxyethylene Polyoxypropylene Ether in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2006, 51, 542-544.	1.0	24
75	Reactivity of Br¶nsted acid ionic liquids as dual solvent and catalyst for Fischer esterifications. Korean Journal of Chemical Engineering, 2009, 26, 666-672.	1.2	24
76	Turnâ€On Photocatalysis: Creating Loneâ€Pair Donor–Acceptor Bonds in Organic Photosensitizer to Enhance Intersystem Crossing. Advanced Science, 2021, 8, e2100631.	5.6	24
77	Adsorption Behavior of Glucose, Xylose, and Arabinose on Five Different Cation Exchange Resins. Journal of Chemical & Engineering Data, 2010, 55, 735-738.	1.0	23
78	Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions. Frontiers of Chemical Science and Engineering, 2018, 12, 24-31.	2.3	23
79	Nanostructured Branched-Chain Carboxylate Ionic Liquids: Synthesis, Characterization, and Extraordinary Solubility for Bioactive Molecules. ACS Sustainable Chemistry and Engineering, 2018, 6, 8983-8991.	3.2	23
80	Microporous Carbon Adsorbents Prepared by Activating Reagent-Free Pyrolysis for Upgrading Low-Quality Natural Gas. ACS Sustainable Chemistry and Engineering, 2020, 8, 977-985.	3.2	23
81	A pore-engineered metal-organic framework with mixed ligands enabling highly efficient separation of hexane isomers for gasoline upgrading. Separation and Purification Technology, 2021, 268, 118646.	3.9	23
82	Carbon dioxide capture in gallate-based metal-organic frameworks. Separation and Purification Technology, 2022, 292, 121031.	3.9	23
83	Effect of Buffer Solution and Temperature on the Stability of Penicillin G. Journal of Chemical & Engineering Data, 2008, 53, 543-547.	1.0	22
84	Diffusion coefficients of l-menthone and l-carvone in mixtures of carbon dioxide and ethanol. Journal of Supercritical Fluids, 2010, 55, 86-95.	1.6	22
85	One of the Distinctive Properties of Ionic Liquids over Molecular Solvents and Inorganic Salts: Enhanced Basicity Stemming from the Electrostatic Environment and "Free―Microstructure. Journal of Physical Chemistry B, 2014, 118, 3682-3688.	1.2	22
86	Allylic oxidation of olefins with a manganese-based metal–organic framework. Green Chemistry, 2019, 21, 3629-3636.	4.6	22
87	Porous Hydrogen-Bonded Frameworks Assembled from Metal-Nucleobase Entities for Xe/Kr Separation. CCS Chemistry, 2022, 4, 381-388.	4.6	22
88	Instability Mechanisms of Supported Liquid Membrane for Phenol Transport. Chinese Journal of Chemical Engineering, 2009, 17, 750-755.	1.7	21
89	Water Solubilization Capacity and Volume-Induced Percolation of Sodium Bis(2-ethylhexyl)sulfosuccinate Microemulsions in the Presence of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquids. Journal of Chemical & Engineering Data, 2011, 56, 3698-3702.	1.0	21
90	Cosolvent effects on the diffusions of 1,3-dichlorobenzene, l-carvone, geraniol and 3-fluorophenol in supercritical carbon dioxide. Journal of Supercritical Fluids, 2011, 58, 216-225.	1.6	21

#	Article	IF	CITATIONS
91	Adsorption equilibria of artemisinin from supercritical carbon dioxide on silica gel. Journal of Supercritical Fluids, 2009, 49, 189-195.	1.6	19
92	Effect of Tethering Strategies on the Surface Structure of Amine-Functionalized Ionic Liquids: Inspiration on the CO ₂ Capture. Journal of Physical Chemistry C, 2013, 117, 16012-16021.	1.5	19
93	A strongly hydrophobic ethane-selective metal-organic framework for efficient ethane/ethylene separation. Chemical Engineering Journal, 2022, 442, 136152.	6.6	19
94	Determination of soyasaponins Ba and Bb in human serum by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 846, 169-175.	1.2	18
95	Thiourea atalyzed Crossâ€Đehydrogenative Coupling of C(sp ³)–H with Diethyl Phosphite. European Journal of Organic Chemistry, 2016, 2016, 3939-3942.	1.2	18
96	Metal nanoparticles in ionic liquid osolvent biphasic systems as active catalysts for acetylene hydrochlorination. AICHE Journal, 2018, 64, 2536-2544.	1.8	18
97	Shaping of gallate-based metal-organic frameworks for adsorption separation of ethylene from acetylene and ethane. Journal of Colloid and Interface Science, 2021, 581, 177-184.	5.0	18
98	Molecular Sieving of Propylene from Propane in Metal–Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Applied Materials & Interfaces, 2022, 14, 30443-30453.	4.0	18
99	Solubility of Vitamin D ₃ in Six Organic Solvents at Temperatures from (248.2 to 273.2) K. Journal of Chemical & Engineering Data, 2012, 57, 2328-2331.	1.0	17
100	Thiourea as an efficient organocatalyst for the transfer hydrogenation of 2-substituted quinoline derivatives. RSC Advances, 2014, 4, 42566-42568.	1.7	17
101	Incorporation of <i>N</i> â€Methylâ€ <scp>d</scp> â€glucamine Functionalized Oligomer into MILâ€101(Cr) for Highly Efficient Removal of Boric Acid from Water. Chemistry - A European Journal, 2016, 22, 15290-15297.	1.7	17
102	Hydropyrolysis of n-Hexane and Toluene to Acetylene in Rotating-Arc Plasma. Energies, 2017, 10, 899.	1.6	17
103	Solubility of Troeger's Base in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2000, 45, 464-466.	1.0	16
104	1-Ethyl-3-methylimidazolium acetate as a highly efficient organocatalyst for cyanosilylation of carbonyl compounds with trimethylsilyl cyanide. Scientific Reports, 2017, 7, 42699.	1.6	16
105	A robust ethane-trapping metal-organic framework for efficient purification of ethylene. Science China Chemistry, 2021, 64, 666-672.	4.2	16
106	A robust two–dimensional layered metal–organic framework for efficient separation of methane from nitrogen. Separation and Purification Technology, 2022, 281, 119911.	3.9	16
107	Effect of ionic liquids on temperature-induced percolation behavior of AOT microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 396, 213-218.	2.3	15
108	Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation. Nano Research, 2022, 15, 7695-7702.	5.8	15

#	Article	IF	CITATIONS
109	Quantification of Soybean Phospholipids in Soybean Degummed Oil Residue by HPLC with Evaporative Light Scattering Detection. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 1333-1343.	0.5	14
110	LC–APCI–MS–MS for the Determination of Celastrol in Human Whole Blood. Chromatographia, 2007, 66, 735-739.	0.7	14
111	Pyrolysis of pulverized coal to acetylene in magnetically rotating hydrogen plasma reactor. Fuel Processing Technology, 2017, 167, 721-729.	3.7	14
112	Carboxylate Ionic Liquids with Large Free Volume and Strong Hydrogen Bonding Basicity for Efficient Separation of Butadiene and <i>n</i> Butene. Industrial & Engineering Chemistry Research, 2018, 57, 13519-13527.	1.8	14
113	Cooperative Interplay of BrÃ,nsted Acid and Lewis Acid Sites in MIL-101(Cr) for Cross-Dehydrogenative Coupling of C–H Bonds. ACS Applied Materials & Interfaces, 2021, 13, 10845-10854.	4.0	14
114	Adsorption of Propylene and Ethylene on 15 Activated Carbons. Journal of Chemical & Engineering Data, 2010, 55, 5669-5672.	1.0	13
115	Molecular Sieving of C ₂ ₃ Alkene from Alkyne with Tuned Threshold Pressure in Robust Layered Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 12825-12830.	1.6	13
116	Gallate-Based Metal–Organic Frameworks for Highly Efficient Removal of Trace Propyne from Propylene. Industrial & Engineering Chemistry Research, 2020, 59, 13716-13723.	1.8	13
117	Separation and Determination of Asiaticoside, Asiaticoside-B and Madecassoside in <i>Centella asiatica</i> Total Triterpenoid Saponins by HPLC. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 1891-1900.	0.5	12
118	Double-Accessible Open Metal Sites in Metal–Organic Frameworks with Suitable Pore Size for Efficient Xe/Kr Separation. Industrial & Engineering Chemistry Research, 2022, 61, 7361-7369.	1.8	12
119	Parallel pore and surface diffusion of levulinic acid in basic polymeric adsorbents. Journal of Chromatography A, 2006, 1132, 190-200.	1.8	11
120	Rapid determination of polycyclic aromatic hydrocarbons in natural tocopherols by high-performance liquid chromatography with fluorescence detection. Food Chemistry, 2008, 110, 226-232.	4.2	11
121	Kinetic modeling and experimental validation of the pyrolysis of propane in hydrogen plasma. International Journal of Hydrogen Energy, 2016, 41, 22689-22697.	3.8	11
122	Numerical simulation of the entrained flow hydropyrolysis of coal in magnetically rotating plasma reactor. Energy Conversion and Management, 2017, 148, 431-439.	4.4	11
123	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie, 2021, 133, 2461-2468.	1.6	11
124	è¶å¾®å"ç⊄³å¢़™"å‰,实现å®ç"¶æ°"äjäj™çf∙和乙çf∙çš"é«~选择性æå⊷. Science China Material	s, 2023, 6	6, 31 9-326.

125	Preparation and characterization of mono―and diâ€dâ€Î±â€tocopheryl polyethylene glycol 1000 succinate. Journal of Applied Polymer Science, 2011, 119, 3026-3033.	1.3	10
126	Biphasic Systems That Consist of Hydrophilic Ionic Liquid, Water, and Ethyl Acetate: The Effects of Interactions on the Phase Behavior. Industrial & Engineering Chemistry Research, 2014, 53, 10784-10790.	1.8	10

#	Article	IF	CITATIONS
127	Simulated moving bed chromatography for the separation of ethyl esters of eicosapentaenoic acid and docosahexaenoic acid under nonlinear conditions. Journal of Chromatography A, 2015, 1425, 189-197.	1.8	10
128	Pyrolysis of Polyolefins Using Rotating Arc Plasma Technology for Production of Acetylene. Energies, 2017, 10, 513.	1.6	10
129	Aqueous Biphasic Systems Containing Customizable Poly(Ionic Liquid)s for Highly Efficient Extractions. ChemSusChem, 2020, 13, 1906-1914.	3.6	10
130	Crystal Structure Transformation in Hydrogenâ€bonded Organic Frameworks via Ion Exchange. Chemistry - an Asian Journal, 2021, 16, 3978-3984.	1.7	10
131	Quantification of tripdiolide in human whole blood by liquid chromatography coupled with atmospheric pressure chemical ionization tandem mass spectrometry. Talanta, 2007, 72, 582-586.	2.9	9
132	Ionic liquid bmimCl/formamide mixture as the polar phase of nonaqueous microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 414, 82-87.	2.3	9
133	Adsorption of 2-Butyl-2-ethyl-1,3-propanediol from Aqueous Solutions on Activated Carbon: Salt-Out Effect on Equilibrium, Kinetics, and Dynamics. Industrial & Engineering Chemistry Research, 2014, 53, 8592-8598.	1.8	9
134	Gas production from polyethylene terephthalate using rotating arc plasma. Chemical Engineering and Processing: Process Intensification, 2018, 128, 257-262.	1.8	9
135	Progress in the Enantioseparation of Î ² -Blockers by Chromatographic Methods. Molecules, 2021, 26, 468.	1.7	9
136	Ultrasound-Assisted Extraction of Soyasaponins from Hypocotyls, and Analysis by LC-ESI-MS. Chromatographia, 2007, 65, 555-560.	0.7	8
137	Kinetic and equilibrium study of the enantioseparation of paroxetine intermediate on amylose and tartaric acidâ€based chiral stationary phases. Journal of Separation Science, 2008, 31, 16-22.	1.3	8
138	Enantioseparation of racemic paroxol on an amyloseâ€based chiral stationary phase by supercritical fluid chromatography. Journal of Separation Science, 2010, 33, 3256-3262.	1.3	8
139	Effect of the Ionic Liquid 1-Butyl-3-Methylimidazolium Tetrafluoroborate on the Properties of Water + Triton X-100 + Hexanol + Cyclohexane Microemulsions. Journal of Chemical & Engineering Data, 2012, 57, 1274-1278.	1.0	8
140	A general method for the separation of amphiphilic surface-active poly(ethylene glycol) mono- and di-esters with long-chain ionic liquid-based biphasic systems. Green Chemistry, 2014, 16, 102-107.	4.6	8
141	Selective separation of zwitterionic phospholipid homologues with functional ionic liquids as extractants. RSC Advances, 2015, 5, 77581-77588.	1.7	8
142	Organocatalytic Approach for Transfer Hydrogenation of Quinolines, Benzoxazines and Benzothiazines. Catalysis Letters, 2017, 147, 1673-1678.	1.4	8
143	Chromatographic Separation of Fluoxetine Hydrochloride Enantiomers by Cellulose Chiral Stationary Phase. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 3229-3242.	0.5	7
144	Enantioseparation of Paroxetine Precursors by HPLC on Amylose and Tartardiamideâ€Based Chiral Stationary Phases. Journal of Liquid Chromatography and Related Technologies, 2008, 31, 1147-1161.	0.5	7

#	Article	IF	CITATIONS
145	Separation of highly unsaturated fatty acid methyl esters from model bio-oils with ionic liquid-cosolvent as extractants. RSC Advances, 2016, 6, 60709-60716.	1.7	7
146	Organocatalyzed cross-dehydrogenative coupling for C(sp3)–O bonds formation: a rapid access to α-aminoxyl isochromans. Catalysis Letters, 2019, 149, 574-579.	1.4	7
147	The Future of Biomass Utilization Technologies Special Issue Editorial. Industrial & Engineering Chemistry Research, 2020, 59, 16895-16898.	1.8	7
148	Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Research, 2022, 15, 10006-10013.	5.8	7
149	Changes in inhibitory activity and secondary conformation of soybean trypsin inhibitors induced by tea polyphenol complexation. Journal of the Science of Food and Agriculture, 2009, 89, 2435-2439.	1.7	6
150	Phase Behavior and Micropolarity of Ammonium Carboxylate Perfluoropolyether Reverse Micelles in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2009, 54, 1884-1888.	1.0	6
151	Diffusion coefficients of C18 unsaturated fatty acid methyl esters in supercritical carbon dioxide containing 10% mole fraction ethanol as modifier. Journal of Supercritical Fluids, 2013, 83, 146-152.	1.6	6
152	Separation of Hydrophobic Compounds Differing in a Monounsaturated Double Bond Using Hydrophilic Ionic Liquid/Water Mixtures as Extractants. ACS Sustainable Chemistry and Engineering, 2018, 6, 2379-2385.	3.2	6
153	Highly efficient separation of strongly hydrophilic structurally related compounds by hydrophobic ionic solutions. AICHE Journal, 2018, 64, 1373-1382.	1.8	6
154	Hydrogenâ€Bonded Metalâ€Nucleobase Frameworks for Efficient Separation of Xenon and Krypton. Angewandte Chemie, 0, , .	1.6	4
155	Study on the alcoholysis of isoflavone catalyzed by ionic liquids. Reaction Kinetics and Catalysis Letters, 2008, 95, 257-264.	0.6	3
156	Gas Purification: Ultrahigh and Selective SO ₂ Uptake in Inorganic Anionâ€Pillared Hybrid Porous Materials (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	11.1	3
157	Gas Separation: A Singleâ€Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anionâ€Pillared Ultramicroporous Materials (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870068.	11.1	3
158	Determination and correlation of the solubility of L-arabinose and D-galactose in binary solvent mixtures from 278.15 to 333.15 K. Korean Journal of Chemical Engineering, 2018, 35, 2043-2051.	1.2	3
159	Green chemical engineering in China. Reviews in Chemical Engineering, 2019, 35, 995-1077.	2.3	3
160	Microgeometry-independent equation for measuring infinite dilution activity coefficients using gas-liquid chromatography with static-wall-coated open-tubular columns. Journal of Chromatography A, 2020, 1624, 461264.	1.8	3
161	Extraction of various metal ions by open-chain crown ether bridged diphosphates in supercritical carbon dioxide. Pure and Applied Chemistry, 2020, 92, 1683-1694.	0.9	3
162	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie, 2022, 134, .	1.6	3

#	Article	IF	CITATIONS
163	Separation of Macromolecular Impurities in Penicillin G Sodium by Gel Filtration Chromatography. Journal of Liquid Chromatography and Related Technologies, 2009, 32, 984-999.	0.5	2
164	CO ₂ -Assisted Back-Extraction Method for Ionic Liquid Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2016, 4, 4403-4410.	3.2	2
165	Adsorption separation of raffinose from sucrose by activated carbon: Equilibrium, kinetics and dynamic breakthrough. Separation Science and Technology, 2016, 51, 1636-1644.	1.3	2
166	Titelbild: Hydrogenâ€Bonded Metal–Nucleobase Frameworks for Efficient Separation of Xenon and Krypton (Angew. Chem. 11/2022). Angewandte Chemie, 2022, 134, .	1.6	2
167	Cooperative control of intralayer and interlayer space in MOFs enables selective capture of intermediate-sized molecules. Cell Reports Physical Science, 2022, 3, 100903.	2.8	2
168	RETENTION OF STATIONARY PHASE AND PARTITION EFFICIENCY OF MULTILAYER HELICAL COLUMN ROTATED AROUND ITS HORIZONTAL AXIS. Journal of Liquid Chromatography and Related Technologies, 2000, 23, 2219-2224.	0.5	1
169	LC Separation and Quantification of Tocopheryl Polyethylene Glycol Succinate and Tocopheryl Acid Succinate in TPGS Reaction Mixture. Chromatographia, 2009, 70, 551-555.	0.7	1
170	Adsorption Behavior of Penicillin G Sodium on Hydrophilic Gel Toyopearl HW-40F. Journal of Chemical & Engineering Data, 2009, 54, 1052-1055.	1.0	1
171	Adsorption behavior of \hat{l} ±-tocopheryl succinate and \hat{l} ±-tocopheryl polyethylene glycol succinate onto weakly basic anion exchange resins. Korean Journal of Chemical Engineering, 2015, 32, 511-520.	1.2	1
172	Innentitelbild: Sorting of C ₄ Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Size‣ieving (Angew. Chem. 51/2017). Angewandte Chemie, 2017, 129, 16310-16310.	1.6	1
173	Heterogeneous synthesis of tetrahydroquinoline derivatives via cascade Povarov reaction catalyzed by sulfonic acid functionalized metalâ€organic frameworks. Nano Select, 2021, 2, 1968.	1.9	1
174	Tandem synthesis of tetrahydroquinolines and identification of the reaction network by <i>operando</i> NMR. Catalysis Science and Technology, 2021, 11, 4332-4341.	2.1	1
175	Hybrid Deep Eutectic Solvents with Flexible Hydrogen-Bonded Supramolecular Networks for Highly Efficient Uptake of NH3. ChemSusChem, 2017, 10, 3283-3283.	3.6	1
176	Shapeâ€size sieving of <i>trans</i> ―and <scp><i>cis</i>â€piperylene</scp> isomers with <scp>gallateâ€based metalâ€organic</scp> frameworks. AICHE Journal, 2022, 68, .	1.8	1
177	New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. ChemSusChem, 2016, 9, 765-765.	3.6	0
178	Titelbild: Separation of Xe from Kr with Record Selectivity and Productivity in Anionâ€Pillared Ultramicroporous Materials by Inverse Size‧ieving (Angew. Chem. 9/2020). Angewandte Chemie, 2020, 132, 3365-3365.	1.6	0