
Antonio Villalobo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4406833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Calmodulin-binding proteins as calpain substrates. Biochemical Journal, 1989, 262, 693-706.	1.7	282
2	The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 398-435.	1.9	264
3	REVIEW ARTICLE: Nitric oxide and cell proliferation. FEBS Journal, 2006, 273, 2329-2344.	2.2	151
4	Phosphorylation of calmodulin. FEBS Journal, 2002, 269, 3619-3631.	0.2	130
5	The Human Epidermal Growth Factor Receptor Contains a Juxtamembrane Calmodulin-Binding Siteâ€. Biochemistry, 1998, 37, 227-236.	1.2	106
6	A Guide to Signaling Pathways Connecting Protein-Glycan Interaction with the Emerging Versatile Effector Functionality of Mammalian Lectins. Trends in Glycoscience and Glycotechnology, 2006, 18, 1-37.	0.0	103
7	Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase. Biochemical Journal, 1997, 326, 369-376.	1.7	86
8	Activation of the Ca2+-ATPase of human erythrocyte membrane by an endogenous Ca2+-dependent neutral protease. Archives of Biochemistry and Biophysics, 1988, 260, 696-704.	1.4	83
9	The plasma membrane calcium pump: a multiregulated transporter. Trends in Cell Biology, 1992, 2, 46-52.	3.6	83
10	Signaling Pathways for Transduction of the Initial Message of the Glycocode into Cellular Responses. Cells Tissues Organs, 1998, 161, 110-129.	1.3	83
11	Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 507-521.	1.9	72
12	The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. International Journal of Molecular Sciences, 2020, 21, 765.	1.8	63
13	Membrane-permeable Calmodulin Inhibitors (e.g. W-7/W-13) Bind to Membranes, Changing the Electrostatic Surface Potential. Journal of Biological Chemistry, 2007, 282, 8474-8486.	1.6	52
14	Characterization of the fragmented forms of calcineurin produced by calpain I. Biochemistry and Cell Biology, 1989, 67, 703-711.	0.9	51
15	Antiproliferative effect of nitric oxide on epidermal growth factor-responsive human neuroblastoma cells. Journal of Neurochemistry, 2002, 83, 119-131.	2.1	50
16	S-Nitrosylation of the epidermal growth factor receptor: A regulatory mechanism of receptor tyrosine kinase activity. Free Radical Biology and Medicine, 2009, 46, 471-479.	1.3	49
17	Calmodulinâ€mediated regulation of the epidermal growth factor receptor. FEBS Journal, 2010, 277, 327-342.	2.2	45
18	Further characterization of calpain-mediated proteolysis of the human erythrocyte plasma membrane Ca2+-ATPase. Archives of Biochemistry and Biophysics, 1988, 267, 317-327.	1.4	42

#	Article	IF	CITATIONS
19	Molecular analysis of the EGFR gene in astrocytic gliomas: mRNA expression, quantitative-PCR analysis of non-homogeneous gene amplification and DNA sequence alterations. Neuropathology and Applied Neurobiology, 2005, 31, 384-394.	1.8	42
20	Src-family tyrosine kinases and the Ca2+ signal. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 915-932.	1.9	42
21	Evidence for the direct interaction between calmodulin and the human epidermal growth factor receptor. Biochemical Journal, 2002, 362, 499-505.	1.7	41
22	Phosphorylation of Calmodulin by the Epidermal-growth-factor-receptor Tyrosine Kinase. FEBS Journal, 1994, 224, 909-916.	0.2	39
23	The ErbB2/Neu/HER2 receptor is a new calmodulin-binding protein. Biochemical Journal, 2004, 381, 257-266.	1.7	37
24	Endogenous calmodulin interacts with the epidermal growth factor receptor in living cells. FEBS Letters, 2004, 559, 175-180.	1.3	36
25	Differential response of the epidermal growth factor receptor tyrosine kinase activity to several plant and mammalian lectins. Molecular and Cellular Biochemistry, 1995, 142, 117-124.	1.4	35
26	Ca2+/Calmodulin and Apo-Calmodulin Both Bind to and Enhance the Tyrosine Kinase Activity of c-Src. PLoS ONE, 2015, 10, e0128783.	1.1	35
27	Regulation of the Ligand-dependent Activation of the Epidermal Growth Factor Receptor by Calmodulin. Journal of Biological Chemistry, 2012, 287, 3273-3281.	1.6	34
28	Proteins with calmodulin-like domains: structures and functional roles. Cellular and Molecular Life Sciences, 2019, 76, 2299-2328.	2.4	33
29	Kinetic properties of the purified Ca2+-translocating ATPase from human erythrocyte plasma membrane. Biochimica Et Biophysica Acta - Biomembranes, 1986, 854, 9-20.	1.4	32
30	The epidermal growth factor receptor tyrosine kinase phosphorylates connexin32. Molecular and Cellular Biochemistry, 1998, 187, 201-210.	1.4	30
31	The adaptor Grb7 is a novel calmodulin-binding protein: functional implications of the interaction of calmodulin with Grb7. Oncogene, 2005, 24, 4206-4219.	2.6	29
32	Nitric oxide-induced epidermal growth factor-dependent phosphorylations in A431 tumour cells. FEBS Journal, 2003, 270, 1828-1837.	0.2	28
33	Genomic Organization and Control of the Grb7 Gene Family. Current Genomics, 2008, 9, 60-68.	0.7	27
34	The multifunctional role of phospho-calmodulin in pathophysiological processes. Biochemical Journal, 2018, 475, 4011-4023.	1.7	26
35	Reconstitution of ion-motive transport ATPases in artificial lipid membranes. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1017, 1-48.	0.5	23
36	Characterization of Phospho-(Tyrosine)-Mimetic Calmodulin Mutants. PLoS ONE, 2015, 10, e0120798.	1.1	23

#	Article	IF	CITATIONS
37	Proton countertransport by the reconstituted erythrocyte Ca2+-translocating ATPase: Evidence using ionophoretic compounds. Journal of Membrane Biology, 1986, 93, 249-258.	1.0	21
38	Activation of the BRCA1/Chk1/p53/p21Cip1/Waf1 pathway by nitric oxide and cell cycle arrest in human neuroblastoma NB69 cells. Nitric Oxide - Biology and Chemistry, 2012, 26, 182-191.	1.2	21
39	Assimilatory nitrate reductase from Acinetobacter calcoaceticus. Archives of Microbiology, 1977, 112, 127-132.	1.0	19
40	Energy-dependent H+ and K+ translocation by the reconstituted yeast plasma membrane ATPase. Canadian Journal of Biochemistry and Cell Biology, 1984, 62, 865-877.	1.3	19
41	Ca 2+ signaling and Src-kinases-controlled cellular functions. Archives of Biochemistry and Biophysics, 2018, 650, 59-74.	1.4	19
42	Calpain I activates Ca2+ transport by the reconstituted erythrocyte Ca2+ pump. Journal of Membrane Biology, 1989, 112, 233-245.	1.0	18
43	Regulatory Interaction between Calmodulin and the Epidermal Growth Factor Receptor. Annals of the New York Academy of Sciences, 1995, 766, 472-476.	1.8	18
44	Significance of Calcium Binding, Tyrosine Phosphorylation, and Lysine Trimethylation for the Essential Function of Calmodulin in Vertebrate Cells Analyzed in a Novel Gene Replacement System. Journal of Biological Chemistry, 2012, 287, 18173-18181.	1.6	18
45	Electrogenic proton ejection coupled to electron transport through the energy-conserving site 2 and K+/H+ exchange in yeast mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1981, 637, 124-129.	0.5	17
46	Calmodulin regulates the translocation of Grb7 into the nucleus. FEBS Letters, 2012, 586, 1533-1539.	1.3	17
47	Down-regulation of the epidermal growth factor receptor by altering N-glycosylation: emerging role of β1,4-galactosyltransferases. Anticancer Research, 2012, 32, 1565-72.	0.5	17
48	A Method for the Purification of Phospho(Tyr)calmodulin Free of Nonphosphorylated Calmodulin. Protein Expression and Purification, 1999, 16, 388-395.	0.6	15
49	Nuclear magnetic resonance imaging of tumour growth and neovasculature performance <i>in vivo</i> reveals Grb7 as a novel antiangiogenic target. NMR in Biomedicine, 2013, 26, 1059-1069.	1.6	15
50	Targeting the Calmodulin-Regulated ErbB/Grb7 Signaling Axis in Cancer Therapy. Journal of Pharmacy and Pharmaceutical Sciences, 2013, 16, 177.	0.9	15
51	The activating role of phospho-(Tyr)-calmodulin on the epidermal growth factor receptor. Biochemical Journal, 2015, 472, 195-204.	1.7	15
52	Comparative phosphorylation of calmodulin from trypanosomatids and bovine brain by calmodulin-binding protein kinases. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1998, 120, 57-65.	0.5	14
53	O-GlcNAcylation of the human epidermal growth factor receptor. Organic and Biomolecular Chemistry, 2015, 13, 8196-8204.	1.5	14
54	RESPIRATION-COUPLED H+EJECTION BY MITOCHONDRIA. Annals of the New York Academy of Sciences, 1980, 341, 585-592.	1.8	13

#	Article	IF	CITATIONS
55	Endogenous hyperphosphorylation in plasma membrane from an ascites hepatocarcinoma cell line. Biochemistry and Cell Biology, 1988, 66, 1-12.	0.9	13
56	Phosphorylation of Connexin-32 by the Epidermal Growth Factor Receptor Tyrosine Kinase. Annals of the New York Academy of Sciences, 1995, 766, 477-480.	1.8	13
57	Phosphorylation of Calmodulin by Permeabilized Fibroblasts Overexpressing the Human Epidermal Growth Factor Receptor. Biological Chemistry, 1997, 378, 31-7.	1.2	13
58	Characterisation of tyrosine-phosphorylation-defective calmodulin mutants. Protein Expression and Purification, 2005, 41, 384-392.	0.6	13
59	Time-Dependent Effect of Orchidectomy on Vascular Nitric Oxide and Thromboxane A2 Release. Functional Implications to Control Cell Proliferation through Activation of the Epidermal Growth Factor Receptor. PLoS ONE, 2014, 9, e102523.	1.1	13
60	Deletion of the calmodulin-binding domain of Grb7 impairs cell attachment to the extracellular matrix and migration. Biochemical and Biophysical Research Communications, 2013, 436, 271-277.	1.0	12
61	Phosphorylated and non-phosphorylated connexin-32 molecules in gap junction plaques are protected against calpain proteolysis after phosphorylation by protein kinase C. Biochemical Society Transactions, 1994, 22, 793-796.	1.6	11
62	THE H+-ATPase OF THE YEAST PLASMA MEMBRANE. Annals of the New York Academy of Sciences, 1982, 402, 91-98.	1.8	10
63	Phosphorylation of Calmodulin by Plasma-Membrane-Associated Protein Kinase(s). FEBS Journal, 1995, 234, 50-58.	0.2	10
64	Ehrlich ascites tumor cells produce a transforming growth factor-beta (TGFbeta)-like activity but lack receptors with TGFbeta-binding capacity. Molecular and Cellular Biochemistry, 1997, 170, 153-162.	1.4	10
65	Differential p38 mitogen-activated protein kinase-controlled hypophosphorylation of the retinoblastoma protein induced by nitric oxide in neuroblastoma cells. Free Radical Biology and Medicine, 2008, 44, 353-366.	1.3	10
66	Nitric oxide changes distinct aspects of the glycophenotype of human neuroblastoma NB69 cells. Nitric Oxide - Biology and Chemistry, 2011, 24, 91-101.	1.2	10
67	The adaptors Grb10 and Grb14 are calmodulinâ€binding proteins. FEBS Letters, 2017, 591, 1176-1186.	1.3	9
68	Grb7-derived calmodulin-binding peptides inhibit proliferation, migration and invasiveness of tumor cells while they enhance attachment to the substrate. Heliyon, 2020, 6, e03922.	1.4	9
69	The impact of calmodulin on the cell cycle analyzed in a novel human cellular genetic system. Cell Calcium, 2020, 88, 102207.	1.1	9
70	The Epidermal Growth Factor Receptor and the Calcium Signal. , 2000, , 287-303.		9
71	Stoichiometry of H+ ejection coupled to electron transport through site 2 in ascites tumor mitochondria. Archives of Biochemistry and Biophysics, 1980, 205, 210-216.	1.4	8
72	Energetic efficiency of different mechanistic models for potassium ion uptake in lower eukaryotic cells. Folia Microbiologica, 1988, 33, 407-424.	1.1	7

#	Article	IF	CITATIONS
73	Inhibition of the Adenylylation of Liver Plasma Membrane-Bound Proteins by Plant and Mammalian Lectins. Biological Chemistry Hoppe-Seyler, 1993, 374, 133-142.	1.4	7
74	Calcium-dependent inhibition of the erythrocyte Ca2+ translocating ATPase by carbodiimides. Biochimica Et Biophysica Acta - Biomembranes, 1986, 858, 188-194.	1.4	6
	The effect of calmodulin on the interaction of carbodiimides with the purified human ervthrocyte		

#	Article	IF	CITATIONS
91	The (Ca2+ + Mg2+)-ATPase. , 1989, , 75-101.		Ο
92	Ovariectomy regulates the production of prostanoids and the MAPK pathway in rat mesenteric arteries (LB675). FASEB Journal, 2014, 28, LB675.	0.2	0