Felipe Saldanha-araujo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4406698/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. , 2022, 233, 108021.		12
2	Neuroprotective effects on microglia and insights into the structure–activity relationship of an antioxidant peptide isolated from <i>Pelophylax perezi</i> . Journal of Cellular and Molecular Medicine, 2022, 26, 2793-2807.	1.6	7
3	Low expression of ZHX1 and ZHX2 impacts on the prognosis of chronic lymphocytic leukemia. Biomarker Research, 2021, 9, 10.	2.8	5
4	Commentary: Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Frontiers in Immunology, 2021, 12, 682195.	2.2	1
5	The peptide secreted at the water to land transition in a model amphibian has antioxidant effects. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211531.	1.2	6
6	The immunosuppressive mechanisms of mesenchymal stem cells are differentially regulated by platelet poor plasma and fetal bovine serum supplemented media. International Immunopharmacology, 2020, 79, 106172.	1.7	10
7	Chitosan nanoparticles loading oxaliplatin as a mucoadhesive topical treatment of oral tumors: Iontophoresis further enhances drug delivery ex vivo. International Journal of Biological Macromolecules, 2020, 154, 1265-1275.	3.6	62
8	Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Frontiers in Immunology, 2020, 11, 1563.	2.2	31
9	Epigenetic priming by EHMT1/EHMT2 in acute lymphoblastic leukemia induces TP53 and TP73 overexpression and promotes cell death. Toxicology in Vitro, 2020, 69, 104992.	1.1	3
10	GVHD-derived plasma as a priming strategy of mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 156.	2.4	15
11	IDRâ€1018 induces cell proliferation, migration, and reparative gene expression in 2D culture and 3D human skin equivalents. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2018-2030.	1.3	11
12	Mesenchymal stem cells immunomodulation: The road to IFN-Î ³ licensing and the path ahead. Cytokine and Growth Factor Reviews, 2019, 47, 32-42.	3.2	55
13	Unraveling KDM4 histone demethylase expression and its association with adverse cytogenetic findings in chronic lymphocytic leukemia. Medical Oncology, 2019, 36, 3.	1.2	8
14	Assessment of the Immunosuppressive Potential of INF-Î ³ Licensed Adipose Mesenchymal Stem Cells, Their Secretome and Extracellular Vesicles. Cells, 2019, 8, 22.	1.8	51
15	LL-37 treatment on human peripheral blood mononuclear cells modulates immune response and promotes regulatory T-cells generation. Biomedicine and Pharmacotherapy, 2018, 108, 1584-1590.	2.5	22
16	GLP overexpression is associated with poor prognosis in Chronic Lymphocytic Leukemia and its inhibition induces leukemic cell death. Investigational New Drugs, 2018, 36, 955-960.	1.2	9
17	MLL2/KMT2D and MLL3/KMT2C expression correlates with disease progression and response to imatinib mesylate in chronic myeloid leukemia. Cancer Cell International, 2018, 18, 26.	1.8	20
18	Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnology Advances, 2018, 36, 2019-2031.	6.0	32

Felipe Saldanha-araujo

#	Article	IF	CITATIONS
19	Abstract 366: Association of MLL2/KMT2Dand MLL3/KMT2C with chronic myeloid leukemia. , 2018, , .		0
20	NSD1 and NSD2 Transcriptional Levels Might Predict Clinical Outcome in AML Patients. Blood, 2018, 132, 5257-5257.	0.6	2
21	TGF-beta/atRA-induced Tregs express a selected set of microRNAs involved in the repression of transcripts related to Th17 differentiation. Scientific Reports, 2017, 7, 3627.	1.6	32
22	Aberrant levels of <i>SUV39H1</i> and <i>SUV39H2</i> methyltransferase are associated with genomic instability in chronic lymphocytic leukemia. Environmental and Molecular Mutagenesis, 2017, 58, 654-661.	0.9	11
23	Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discovery Today, 2017, 22, 1730-1739.	3.2	7
24	LL-37 boosts immunosuppressive function of placenta-derived mesenchymal stromal cells. Stem Cell Research and Therapy, 2016, 7, 189.	2.4	23
25	Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signalling, 2016, 12, 595-609.	1.1	49
26	Residual expression of SMYD2 and SMYD3 is associated with the acquisition of complex karyotype in chronic lymphocytic leukemia. Tumor Biology, 2016, 37, 9473-9481.	0.8	24
27	Nuclear SET Domain (NSD) Protein Lysine Methyltransferases (KMT) Family Members Expression in Acute Myeloid Leukemia. Blood, 2016, 128, 5097-5097.	0.6	Ο
28	Assessment of MLL methyltransferase gene expression in larynx carcinoma. Oncology Reports, 2015, 33, 2017-2022.	1.2	10
29	Overexpression of EZH2 associates with a poor prognosis in chronic lymphocytic leukemia. Blood Cells, Molecules, and Diseases, 2015, 54, 97-102.	0.6	29
30	Mechanisms of T-Cell Immunosuppression by Mesenchymal Stromal Cells: What Do We Know So Far?. BioMed Research International, 2014, 2014, 1-14.	0.9	140
31	Hydroxycarbamide modulates components involved in the regulation of adenosine levels in blood cells from sickle-cell anemia patients. Annals of Hematology, 2014, 93, 1457-1465.	0.8	9
32	Use of Cancer/Testis Antigens in Immunotherapy: Potential Effect on Mesenchymal Stem Cells. Stem Cells and Cancer Stem Cells, 2012, , 113-119.	0.1	1
33	Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes: roles of canonical and nonâ€canonical NFâ€₽B signalling. Journal of Cellular and Molecular Medicine, 2012, 16, 1232-1244.	1.6	44
34	CD39 Expression in Mesenchymal Stromal Cells. Journal of Immunotherapy, 2011, 34, 568.	1.2	7
35	Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Research, 2011, 7, 66-74.	0.3	120
36	Early Effects on T lymphocyte Response to Iron Deficiency in Mice. Short Communication. Biological Trace Element Research, 2009, 127, 95-101.	1.9	3