
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4406247/publications.pdf Version: 2024-02-01

71HE | 111

#	Article	IF	CITATIONS
1	Tissue-based map of the human proteome. Science, 2015, 347, 1260419.	6.0	10,802
2	Engineering Cellular Metabolism. Cell, 2016, 164, 1185-1197.	13.5	953
3	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
4	Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metabolism, 2015, 22, 228-238.	7.2	638
5	Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution. Cell Metabolism, 2016, 23, 554-562.	7.2	572
6	Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nature Communications, 2014, 5, 3083.	5.8	461
7	Altered sterol composition renders yeast thermotolerant. Science, 2014, 346, 75-78.	6.0	368
8	Improving the phenotype predictions of a yeast genomeâ€scale metabolic model by incorporating enzymatic constraints. Molecular Systems Biology, 2017, 13, 935.	3.2	367
9	Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metabolism, 2015, 22, 320-331.	7.2	345
10	An Integrated Understanding of the Rapid Metabolic Benefits of a Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. Cell Metabolism, 2018, 27, 559-571.e5.	7.2	321
11	In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metabolic Engineering, 2006, 8, 102-111.	3.6	311
12	Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nature Communications, 2016, 7, 11709.	5.8	306
13	The gut microbiota modulates host amino acid and glutathione metabolism in mice. Molecular Systems Biology, 2015, 11, 834.	3.2	291
14	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	13.7	283
15	Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 2013, 15, 48-54.	3.6	268
16	Metabolic engineering of yeast for production of fuels and chemicals. Current Opinion in Biotechnology, 2013, 24, 398-404.	3.3	263
17	The human secretome. Science Signaling, 2019, 12, .	1.6	259
18	Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 2019, 52, 134-142.	3.6	251

#	Article	IF	CITATIONS
19	Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nature Catalysis, 2020, 3, 274-288.	16.1	245
20	De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2015, 32, 1-11.	3.6	242
21	Kinetic models in industrial biotechnology – Improving cell factory performance. Metabolic Engineering, 2014, 24, 38-60.	3.6	238
22	Microbial acetyl-CoA metabolism and metabolic engineering. Metabolic Engineering, 2015, 28, 28-42.	3.6	237
23	RAVEN 2.0: A versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Computational Biology, 2018, 14, e1006541.	1.5	228
24	An atlas of human metabolism. Science Signaling, 2020, 13, .	1.6	223
25	Glucose repression in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2015, 15, fov068.	1.1	220
26	A consensus S. cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nature Communications, 2019, 10, 3586.	5.8	217
27	Reprogramming Yeast Metabolism from Alcoholic Fermentation to Lipogenesis. Cell, 2018, 174, 1549-1558.e14.	13.5	215
28	Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metabolic Engineering, 2015, 31, 181-188.	3.6	213
29	Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nature Microbiology, 2017, 2, 17044.	5.9	198
30	High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab on A Chip, 2014, 14, 806-813.	3.1	195
31	Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances, 2015, 33, 1395-1402.	6.0	195
32	Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via \hat{l}^2 -alanine. Metabolic Engineering, 2015, 27, 57-64.	3.6	185
33	Absolute Quantification of Protein and mRNA Abundances Demonstrate Variability in Gene-Specific Translation Efficiency in Yeast. Cell Systems, 2017, 4, 495-504.e5.	2.9	178
34	Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature Communications, 2019, 10, 4976.	5.8	177
35	Systems Biology of Metabolism. Annual Review of Biochemistry, 2017, 86, 245-275.	5.0	173
36	Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Current Opinion in Biotechnology, 2015, 35, 7-15.	3.3	170

#	Article	IF	CITATIONS
37	A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nature Communications, 2019, 10, 1053.	5.8	164
38	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	1.4	158
39	Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12, 491-510.	1.1	157
40	Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition. Journal of the American Chemical Society, 2016, 138, 15368-15377.	6.6	157
41	Metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering, 2015, 29, 1-11.	3.6	152
42	Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 2016, 4, 3-16.	0.5	150
43	Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11874-E11883.	3.3	149
44	Engineering synergy in biotechnology. Nature Chemical Biology, 2014, 10, 319-322.	3.9	147
45	Fatty acid synthesis is required for breast cancer brain metastasis. Nature Cancer, 2021, 2, 414-428.	5.7	147
46	Barriers and opportunities in bio-based production of hydrocarbons. Nature Energy, 2018, 3, 925-935.	19.8	146
47	The role of biofuels in the future energy supply. Energy and Environmental Science, 2013, 6, 1077.	15.6	145
48	Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. Npj Systems Biology and Applications, 2016, 2, 16005.	1.4	141
49	DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chemical Reviews, 2018, 118, 4-72.	23.0	141
50	Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4689-96.	3.3	138
51	Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism. Cancer & Metabolism, 2014, 2, 21.	2.4	137
52	Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance. Cell Metabolism, 2016, 24, 172-184.	7.2	133
53	Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metabolism, 2017, 25, 572-579.	7.2	132
54	Transcriptomics resources of human tissues andÂorgans. Molecular Systems Biology, 2016, 12, 862.	3.2	130

#	Article	IF	CITATIONS
55	Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology, 2016, 37, 165-172.	3.3	130
56	Metabolic engineering of yeast for fermentative production of flavonoids. Bioresource Technology, 2017, 245, 1645-1654.	4.8	129
57	Different expression systems for production of recombinant proteins in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2012, 109, 1259-1268.	1.7	128
58	Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metabolic Engineering, 2014, 22, 104-109.	3.6	123
59	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	5.8	122
60	Metabolic Trade-offs in Yeast are Caused by F1F0-ATP synthase. Scientific Reports, 2016, 6, 22264.	1.6	121
61	Complete genomic and transcriptional landscape analysis using third-generation sequencing: a case study of Saccharomyces cerevisiae CEN.PK113-7D. Nucleic Acids Research, 2018, 46, e38-e38.	6.5	116
62	Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microbial Cell Factories, 2014, 13, 39.	1.9	115
63	Modelling approaches for studying the microbiome. Nature Microbiology, 2019, 4, 1253-1267.	5.9	114
64	Stratification of Hepatocellular Carcinoma Patients Based on Acetate Utilization. Cell Reports, 2015, 13, 2014-2026.	2.9	113
65	Proteome- and Transcriptome-Driven Reconstruction of the Human Myocyte Metabolic Network and Its Use for Identification of Markers for Diabetes. Cell Reports, 2015, 11, 921-933.	2.9	112
66	Rapid Quantification of Yeast Lipid using Microwave-Assisted Total Lipid Extraction and HPLC-CAD. Analytical Chemistry, 2013, 85, 4912-4919.	3.2	110
67	Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses. MBio, 2015, 6, e00431.	1.8	108
68	Production of farnesene and santalene by <i>Saccharomyces cerevisiae</i> using fedâ€batch cultivations with <i>RQ</i> â€controlled feed. Biotechnology and Bioengineering, 2016, 113, 72-81.	1.7	102
69	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	13.7	102
70	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	15.2	102
71	Longâ€chain alkane production by the yeast <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2015, 112, 1275-1279.	1.7	101
72	Profiling of Cytosolic and Peroxisomal Acetyl-CoA Metabolism in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e42475.	1.1	100

#	Article	IF	CITATIONS
73	Machine Learning Applied to Predicting Microorganism Growth Temperatures and Enzyme Catalytic Optima. ACS Synthetic Biology, 2019, 8, 1411-1420.	1.9	100
74	From next-generation sequencing to systematic modeling of the gut microbiome. Frontiers in Genetics, 2015, 6, 219.	1.1	99
75	Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 2016, 44, e136-e136.	6.5	99
76	Systems biology of lipid metabolism: From yeast to human. FEBS Letters, 2009, 583, 3905-3913.	1.3	97
77	Engineering of vesicle trafficking improves heterologous protein secretion in Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14, 120-127.	3.6	97
78	Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine. Nature Communications, 2015, 6, 8224.	5.8	97
79	Expanding the product portfolio of fungal type I fatty acid synthases. Nature Chemical Biology, 2017, 13, 360-362.	3.9	97
80	Improving biobutanol production in engineered <i>Saccharomyces cerevisiae</i> by manipulation of acetyl-CoA metabolism. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1051-1056.	1.4	96
81	Energy metabolism controls phenotypes by protein efficiency and allocation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17592-17597.	3.3	96
82	Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. Scientific Reports, 2015, 5, 10738.	1.6	95
83	Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Research, 2018, 18, .	1.1	94
84	Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Frontiers in Bioengineering and Biotechnology, 2015, 3, 184.	2.0	93
85	Metabolic Needs and Capabilities of Toxoplasma gondii through Combined Computational and Experimental Analysis. PLoS Computational Biology, 2015, 11, e1004261.	1.5	92
86	Advancing metabolic engineering through systems biology of industrial microorganisms. Current Opinion in Biotechnology, 2015, 36, 8-15.	3.3	92
87	Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7524-7535.	3.3	92
88	Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast. MBio, 2014, 5, e02153.	1.8	88
89	Genome-scale metabolic reconstructions of Bifidobacterium adolescentis L2-32 and Faecalibacterium prausnitzii A2-165 and their interaction. BMC Systems Biology, 2014, 8, 41.	3.0	88
90	Recent trends in metabolic engineering of microbial chemical factories. Current Opinion in Biotechnology, 2019, 60, 188-197.	3.3	88

#	Article	IF	CITATIONS
91	Genome scale metabolic modeling of cancer. Metabolic Engineering, 2017, 43, 103-112.	3.6	87
92	Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels. FEMS Yeast Research, 2017, 17, .	1.1	87
93	New paradigms for metabolic modeling of human cells. Current Opinion in Biotechnology, 2015, 34, 91-97.	3.3	86
94	Drug Repositioning for Effective Prostate Cancer Treatment. Frontiers in Physiology, 2018, 9, 500.	1.3	85
95	Meta-analysis of the gut microbiota in predicting response to cancer immunotherapy in metastatic melanoma. JCI Insight, 2020, 5, .	2.3	85
96	Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express, 2012, 2, 52.	1.4	83
97	Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Current Opinion in Biotechnology, 2017, 48, 77-84.	3.3	83
98	Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure. Nature Communications, 2020, 11, 6141.	5.8	83
99	Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals. Nature Communications, 2017, 8, 15587.	5.8	82
100	Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2018, 7, 10-15.	1.9	82
101	Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics, 2019, 20, 208.	1.2	81
102	Efficient protein production by yeast requires global tuning of metabolism. Nature Communications, 2017, 8, 1131.	5.8	80
103	Engineering Robustness of Microbial Cell Factories. Biotechnology Journal, 2017, 12, 1700014.	1.8	80
104	Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments. Metabolic Engineering, 2017, 39, 19-28.	3.6	80
105	Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nature Catalysis, 2020, 3, 64-74.	16.1	80
106	Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative. Nature Communications, 2018, 9, 3059.	5.8	79
107	Engineering central metabolism – a grand challenge for plant biologists. Plant Journal, 2017, 90, 749-763.	2.8	78
108	Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Scientific Reports, 2020, 10, 14977.	1.6	78

#	Article	IF	CITATIONS
109	Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 613-622.	1.4	77
110	Current Status of COVID-19 Therapies and Drug Repositioning Applications. IScience, 2020, 23, 101303.	1.9	77
111	Human metabolic atlas: an online resource for human metabolism. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav068.	1.4	76
112	Evolution reveals a glutathione-dependent mechanism of 3-hydroxypropionic acid tolerance. Metabolic Engineering, 2014, 26, 57-66.	3.6	74
113	Genome-scale reconstructions of the mammalian secretory pathway predict metabolic costs and limitations of protein secretion. Nature Communications, 2020, 11, 68.	5.8	74
114	The human liverâ€ s pecific proteome defined by transcriptomics and antibodyâ€based profiling. FASEB Journal, 2014, 28, 2901-2914.	0.2	73
115	Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress. BMC Biology, 2012, 10, 16.	1.7	72
116	Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Frontiers in Genetics, 2014, 5, 86.	1.1	72
117	Engineering the protein secretory pathway of <i>Saccharomyces cerevisiae</i> enables improved protein production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11025-E11032.	3.3	72
118	Production of Î ² -ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14, 84.	1.9	71
119	Metabolic Models of Protein Allocation Call for the Kinetome. Cell Systems, 2017, 5, 538-541.	2.9	71
120	Harnessing xylose pathways for biofuels production. Current Opinion in Biotechnology, 2019, 57, 56-65.	3.3	71
121	Structural basis of ubiquitin modification by the Legionella effector SdeA. Nature, 2018, 557, 674-678.	13.7	69
122	Do genomeâ€scale models need exact solvers or clearer standards?. Molecular Systems Biology, 2015, 11, 831.	3.2	68
123	The Impact of Systems Biology on Bioprocessing. Trends in Biotechnology, 2017, 35, 1156-1168.	4.9	67
124	Affibody Scaffolds Improve Sesquiterpene Production in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2017, 6, 19-28.	1.9	66
125	Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics, 2018, 14, 43.	1.4	66
126	Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2014, 2, 32.	2.0	65

#	Article	IF	CITATIONS
127	Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: Lessons from genome-scale metabolic modeling. Metabolic Engineering, 2018, 49, 128-142.	3.6	65
128	Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metabolic Engineering, 2014, 21, 9-16.	3.6	64
129	Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metabolic Engineering Communications, 2018, 6, 22-27.	1.9	63
130	Adaptive laboratory evolution of tolerance to dicarboxylic acids in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 56, 130-141.	3.6	63
131	Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue. Scientific Reports, 2015, 5, 14841.	1.6	62
132	Molecular Mechanism of Flocculation Self-Recognition in Yeast and Its Role in Mating and Survival. MBio, 2015, 6, .	1.8	62
133	Yeast cell factories on the horizon. Science, 2015, 349, 1050-1051.	6.0	62
134	A molecular genetic toolbox for Yarrowia lipolytica. Biotechnology for Biofuels, 2017, 10, 2.	6.2	62
135	Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Metabolic Engineering, 2017, 44, 81-88.	3.6	62
136	De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nature Communications, 2021, 12, 6085.	5.8	62
137	Proteome analysis of xylose metabolism in Rhodotorula toruloides during lipid production. Biotechnology for Biofuels, 2019, 12, 137.	6.2	61
138	Simplified Intestinal Microbiota to Study Microbe-Diet-Host Interactions in a Mouse Model. Cell Reports, 2019, 26, 3772-3783.e6.	2.9	61
139	Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Scientific Reports, 2015, 5, 8183.	1.6	60
140	Cocoa butter-like lipid production ability of non-oleaginous and oleaginous yeasts under nitrogen-limited culture conditions. Applied Microbiology and Biotechnology, 2017, 101, 3577-3585.	1.7	60
141	Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2018, 11, 297.	6.2	60
142	Adaptation to different types of stress converge on mitochondrial metabolism. Molecular Biology of the Cell, 2016, 27, 2505-2514.	0.9	59
143	Engineering 1-Alkene Biosynthesis and Secretion by Dynamic Regulation in Yeast. ACS Synthetic Biology, 2018, 7, 584-590.	1.9	59
144	Cancer Metabolism: A Modeling Perspective. Frontiers in Physiology, 2015, 6, 382.	1.3	58

#	Article	IF	CITATIONS
145	The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics, 2015, 16, 475.	1.2	58
146	Heterologous transporter expression for improved fatty alcohol secretion in yeast. Metabolic Engineering, 2018, 45, 51-58.	3.6	57
147	A Systematic Investigation of the Malignant Functions and Diagnostic Potential of the Cancer Secretome. Cell Reports, 2019, 26, 2622-2635.e5.	2.9	57
148	Engineering <i>Saccharomyces cerevisiae</i> cells for production of fatty acid-derived biofuels and chemicals. Open Biology, 2019, 9, 190049.	1.5	56
149	Metagenomic Data Utilization and Analysis (MEDUSA) and Construction of a Global Gut Microbial Gene Catalogue. PLoS Computational Biology, 2014, 10, e1003706.	1.5	55
150	Clycosaminoglycan Profiling in Patients' Plasma and Urine Predicts the Occurrence of Metastatic Clear Cell Renal Cell Carcinoma. Cell Reports, 2016, 15, 1822-1836.	2.9	55
151	<i>In Vivo</i> Analysis of the Viable Microbiota and Helicobacter pylori Transcriptome in Gastric Infection and Early Stages of Carcinogenesis. Infection and Immunity, 2017, 85, .	1.0	55
152	Genomeâ€scale model of <i>Rhodotorula toruloides</i> metabolism. Biotechnology and Bioengineering, 2019, 116, 3396-3408.	1.7	55
153	RNAi expression tuning, microfluidic screening, and genome recombineering for improved protein production in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9324-9332.	3.3	54
154	Systems biology based drug repositioning for development of cancer therapy. Seminars in Cancer Biology, 2021, 68, 47-58.	4.3	54
155	Targeting <scp>CDK</scp> 2 overcomes melanoma resistance against <scp>BRAF</scp> and Hsp90 inhibitors. Molecular Systems Biology, 2018, 14, e7858.	3.2	53
156	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	6.1	53
157	Recent advances in combinatorial biosynthesis for drug discovery. Drug Design, Development and Therapy, 2015, 9, 823.	2.0	52
158	Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae. Metabolic Engineering Communications, 2016, 3, 153-163.	1.9	51
159	Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains. Metabolic Engineering, 2017, 44, 265-272.	3.6	51
160	Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1262-1267.	3.3	51
161	Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast. Nature Communications, 2020, 11, 1881.	5.8	51
162	Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae. Scientific Reports, 2016, 6, 25675.	1.6	50

#	Article	IF	CITATIONS
163	Versatile biomanufacturing through stimulus-responsive cell–material feedback. Nature Chemical Biology, 2019, 15, 1017-1024.	3.9	50
164	Evolution from adherent to suspension: systems biology of HEK293 cell line development. Scientific Reports, 2020, 10, 18996.	1.6	49
165	Combined Metabolic Activators Accelerates Recovery in Mildâ€toâ€Moderate COVIDâ€19. Advanced Science, 2021, 8, e2101222.	5.6	49
166	Genome-scale metabolic network reconstruction of model animals as a platform for translational research. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	48
167	Perspective: Metabotyping—A Potential Personalized Nutrition Strategy for Precision Prevention of Cardiometabolic Disease. Advances in Nutrition, 2020, 11, 524-532.	2.9	46
168	Proteome constraints reveal targets for improving microbial fitness in nutrientâ€rich environments. Molecular Systems Biology, 2021, 17, e10093.	3.2	46
169	Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2013, 97, 3559-3568.	1.7	45
170	Screening of 2A peptides for polycistronic gene expression in yeast. FEMS Yeast Research, 2018, 18, .	1.1	45
171	Quantitative analysis of amino acid metabolism in liver cancer links glutamate excretion to nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10294-10304.	3.3	45
172	Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2019, 8, 1968-1975.	1.9	44
173	FadR-Based Biosensor-Assisted Screening for Genes Enhancing Fatty Acyl-CoA Pools in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2019, 8, 1788-1800.	1.9	44
174	Metagenomic analysis of bile salt biotransformation in the human gut microbiome. BMC Genomics, 2019, 20, 517.	1.2	44
175	Proteome reallocation from amino acid biosynthesis to ribosomes enables yeast to grow faster in rich media. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21804-21812.	3.3	44
176	Logical transformation of genome-scale metabolic models for gene level applications and analysis. Bioinformatics, 2015, 31, 2324-2331.	1.8	43
177	Genomeâ€scale metabolic model of <i>Pichia pastoris</i> with native and humanized glycosylation of recombinant proteins. Biotechnology and Bioengineering, 2016, 113, 961-969.	1.7	43
178	Moderate Expression of <i>SEC16</i> Increases Protein Secretion by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2017, 83, .	1.4	43
179	Metabolic engineering of <i>Saccharomyces cerevisiae</i> for production of germacrene A, a precursor of beta-elemene. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1065-1072.	1.4	43
180	Establishing very long hain fatty alcohol and wax ester biosynthesis in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2017, 114, 1025-1035.	1.7	43

#	Article	IF	CITATIONS
181	SLIMEr: probing flexibility of lipid metabolism in yeast with an improved constraint-based modeling framework. BMC Systems Biology, 2019, 13, 4.	3.0	43
182	Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2013, 97, 8955-8962.	1.7	41
183	In vitro co-cultures of human gut bacterial species as predicted from co-occurrence network analysis. PLoS ONE, 2018, 13, e0195161.	1.1	41
184	BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data. Nucleic Acids Research, 2014, 42, W175-W181.	6.5	40
185	Industrial systems biology and its impact on synthetic biology of yeast cell factories. Biotechnology and Bioengineering, 2016, 113, 1164-1170.	1.7	40
186	A New Era of Genome Integration—Simply Cut and Paste!. ACS Synthetic Biology, 2017, 6, 601-609.	1.9	40
187	Twin-primer non-enzymatic DNA assembly: an efficient and accurate multi-part DNA assembly method. Nucleic Acids Research, 2017, 45, e94-e94.	6.5	40
188	Elucidating aromatic acid tolerance at low pH in <i>Saccharomyces cerevisiae</i> using adaptive laboratory evolution. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27954-27961.	3.3	40
189	Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	40
190	Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. AMB Express, 2016, 6, 115.	1.4	39
191	Model-Assisted Fine-Tuning of Central Carbon Metabolism in Yeast through dCas9-Based Regulation. ACS Synthetic Biology, 2019, 8, 2457-2463.	1.9	39
192	The Translational Status of Cancer Liquid Biopsies. Regenerative Engineering and Translational Medicine, 2021, 7, 312-352.	1.6	39
193	The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against nonâ€alcoholic fatty liver disease. Molecular Systems Biology, 2020, 16, e9495.	3.2	39
194	Management of the endoplasmic reticulum stress by activation of the heat shock response in yeast. FEMS Yeast Research, 2014, 14, 481-494.	1.1	38
195	Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in <i>Yarrowia lipolytica</i> . MBio, 2017, 8, .	1.8	38
196	Dynamic regulation of fatty acid pools for improved production of fatty alcohols in Saccharomyces cerevisiae. Microbial Cell Factories, 2017, 16, 45.	1.9	38
197	Metabolic Network-Based Identification and Prioritization of Anticancer Targets Based on Expression Data in Hepatocellular Carcinoma. Frontiers in Physiology, 2018, 9, 916.	1.3	38
198	Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model. BMC Bioinformatics, 2019, 20, 551.	1.2	38

#	Article	IF	CITATIONS
199	Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis. EBioMedicine, 2019, 40, 471-487.	2.7	38
200	Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes. Genome Medicine, 2017, 9, 47.	3.6	37
201	Cell factory engineering for improved production of natural products. Natural Product Reports, 2019, 36, 1233-1236.	5.2	37
202	Pyruvate kinase L/R is a regulator of lipid metabolism and mitochondrial function. Metabolic Engineering, 2019, 52, 263-272.	3.6	37
203	Genomeâ€scale metabolic models applied to human health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1393.	6.6	36
204	Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. ACS Synthetic Biology, 2020, 9, 3236-3244.	1.9	36
205	Mathematical modeling of proteome constraints within metabolism. Current Opinion in Systems Biology, 2021, 25, 50-56.	1.3	36
206	Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis. Nucleic Acids Research, 2016, 44, 5529-5539.	6.5	35
207	Regulation of Yeast-to-Hyphae Transition in Yarrowia lipolytica. MSphere, 2018, 3, .	1.3	35
208	Tackling Cancer with Yeast-Based Technologies. Trends in Biotechnology, 2019, 37, 592-603.	4.9	35
209	Current state of aromatics production using yeast: achievements and challenges. Current Opinion in Biotechnology, 2020, 65, 65-74.	3.3	35
210	Genome-wide analysis of maltose utilization and regulation in aspergilli. Microbiology (United) Tj ETQq0 0 0 rgB1	Qverlock	19 Tf 50 30
211	Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses. FEMS Yeast Research, 2017, 17, .	1.1	34
212	Rewiring carbon flux in Escherichia coli using a bifunctional molecular switch. Metabolic Engineering, 2020, 61, 47-57.	3.6	34
213	Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites. Scientific Reports, 2016, 6, 35112.	1.6	33
214	Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome. Npj Systems Biology and Applications, 2017, 3, 22.	1.4	32
215	Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microbial Cell Factories, 2017, 16, 74.	1.9	32
216	Reconstruction of a Global Transcriptional Regulatory Network for Control of Lipid Metabolism in Yeast by Using Chromatin Immunoprecipitation with Lambda Exonuclease Digestion. MSystems, 2018, 3, .	1.7	32

#	Article	IF	CITATIONS
217	Complex I is bypassed during high intensity exercise. Nature Communications, 2019, 10, 5072.	5.8	32
218	Building blocks are synthesized on demand during the yeast cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7575-7583.	3.3	32
219	The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chemical Society Reviews, 2022, 51, 4763-4785.	18.7	32
220	Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media. Computational and Structural Biotechnology Journal, 2020, 18, 1-8.	1.9	31
221	Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae. BMC Systems Biology, 2014, 8, 73.	3.0	30
222	Effects of acetoacetyl-CoA synthase expression on production of farnesene in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 911-922.	1.4	30
223	Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products. Metabolic Engineering, 2020, 62, 150-160.	3.6	30
224	Production of βâ€carotene in <i>Saccharomyces cerevisiae</i> through altering yeast lipid metabolism. Biotechnology and Bioengineering, 2021, 118, 2043-2052.	1.7	30
225	Innovation trends in industrial biotechnology. Trends in Biotechnology, 2022, 40, 1160-1172.	4.9	30
226	Improved Production of a Heterologous Amylase in Saccharomyces cerevisiae by Inverse Metabolic Engineering. Applied and Environmental Microbiology, 2014, 80, 5542-5550.	1.4	29
227	HCSD: the human cancer secretome database. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav051.	1.4	29
228	Enhanced amino acid utilization sustains growth of cells lacking Snf1/AMPK. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 1615-1625.	1.9	29
229	Flux control through protein phosphorylation in yeast. FEMS Yeast Research, 2016, 16, fow096.	1.1	29
230	Pan-cancer analysis of the metabolic reaction network. Metabolic Engineering, 2020, 57, 51-62.	3.6	29
231	Pathway engineering in yeast for synthesizing the complex polyketide bikaverin. Nature Communications, 2020, 11, 6197.	5.8	29
232	Genome-scale modeling drives 70-fold improvement of intracellular heme production in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	29
233	Applications of computational modeling in metabolic engineering of yeast. FEMS Yeast Research, 2014, 15, n/a-n/a.	1.1	28
234	Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase. FEMS Yeast Research, 2015, 15, .	1.1	28

#	Article	IF	CITATIONS
235	Improving the economics of NASH/NAFLD treatment through the use of systems biology. Drug Discovery Today, 2017, 22, 1532-1538.	3.2	28
236	Synthetic Biology of Yeast. Biochemistry, 2019, 58, 1511-1520.	1.2	28
237	Proteome allocations change linearly with the specific growth rate of Saccharomyces cerevisiae under glucose limitation. Nature Communications, 2022, 13, .	5.8	28
238	Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae. Microbial Cell Factories, 2019, 18, 25.	1.9	27
239	Engineering carboxylic acid reductase for selective synthesis of medium-chain fatty alcohols in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22974-22983.	3.3	27
240	Physiological characterization of secondary metabolite producing Penicillium cell factories. Fungal Biology and Biotechnology, 2017, 4, 8.	2.5	26
241	Challenges in modeling the human gut microbiome. Nature Biotechnology, 2018, 36, 682-686.	9.4	25
242	Metabolic engineering ofSaccharomyces cerevisiaefor production of fatty acid–derived hydrocarbons. Biotechnology and Bioengineering, 2018, 115, 2139-2147.	1.7	25
243	Systems biology perspective for studying the gut microbiota in human physiology and liver diseases. EBioMedicine, 2019, 49, 364-373.	2.7	25
244	Bayesian genome scale modelling identifies thermal determinants of yeast metabolism. Nature Communications, 2021, 12, 190.	5.8	25
245	iNetModels 2.0: an interactive visualization and database of multi-omics data. Nucleic Acids Research, 2021, 49, W271-W276.	6.5	25
246	Yeasts as microbial cell factories for sustainable production of biofuels. Renewable and Sustainable Energy Reviews, 2021, 143, 110907.	8.2	25
247	Improved quantification of farnesene during microbial production from Saccharomyces cerevisiae in two-liquid-phase fermentations. Talanta, 2016, 146, 100-106.	2.9	24
248	Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes. AMB Express, 2017, 7, 34.	1.4	24
249	Modulation of saturation and chain length of fatty acids in <i>Saccharomyces cerevisiae</i> for production of cocoa butterâ€ike lipids. Biotechnology and Bioengineering, 2018, 115, 932-942.	1.7	24
250	Stress-induced expression is enriched for evolutionarily young genes in diverse budding yeasts. Nature Communications, 2020, 11, 2144.	5.8	24
251	Anaerobic α-Amylase Production and Secretion with Fumarate as the Final Electron Acceptor in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2013, 79, 2962-2967.	1.4	23
252	Enhanced ethanol production and reduced glycerol formation in fps1â^† mutants of Saccharomyces cerevisiae engineered for improved redox balancing. AMB Express, 2014, 4, 86.	1.4	23

#	Article	IF	CITATIONS
253	Impact of protein uptake and degradation on recombinant protein secretion in yeast. Applied Microbiology and Biotechnology, 2014, 98, 7149-7159.	1.7	23
254	How to set up collaborations between academia and industrial biotech companies. Nature Biotechnology, 2015, 33, 237-240.	9.4	23
255	Advancing biotechnology with CRISPR/Cas9: recent applications and patent landscape. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 467-480.	1.4	23
256	Identification of the decumbenone biosynthetic gene cluster in Penicillium decumbens and the importance for production of calbistrin. Fungal Biology and Biotechnology, 2018, 5, 18.	2.5	23
257	Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594081.	2.0	23
258	Comprehensive understanding of <i>Saccharomyces cerevisiae</i> phenotypes with wholeâ€cell model WM_S288C. Biotechnology and Bioengineering, 2020, 117, 1562-1574.	1.7	23
259	Metabolic network remodelling enhances yeast's fitness on xylose using aerobic glycolysis. Nature Catalysis, 2021, 4, 783-796.	16.1	23
260	A systems biology approach for studying neurodegenerative diseases. Drug Discovery Today, 2020, 25, 1146-1159.	3.2	23
261	Multiomics Analysis Reveals the Impact of Microbiota on Host Metabolism in Hepatic Steatosis. Advanced Science, 2022, 9, e2104373.	5.6	23
262	Prognostic Value of Plasma and Urine Glycosaminoglycan Scores in Clear Cell Renal Cell Carcinoma. Frontiers in Oncology, 2016, 6, 253.	1.3	22
263	Genome-Wide Mapping of Binding Sites Reveals Multiple Biological Functions of the Transcription Factor Cst6p in Saccharomyces cerevisiae. MBio, 2016, 7, .	1.8	22
264	Predicting growth of the healthy infant using a genome scale metabolic model. Npj Systems Biology and Applications, 2017, 3, 3.	1.4	22
265	Yeast optimizes metal utilization based on metabolic network and enzyme kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
266	In vitro turnover numbers do not reflect in vivo activities of yeast enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
267	Combined metabolic activators therapy ameliorates liver fat in nonalcoholic fatty liver disease patients. Molecular Systems Biology, 2021, 17, e10459.	3.2	22
268	Systems biology analysis of hepatitis C virus infection reveals the role of copy number increases in regions of chromosome 1q in hepatocellular carcinoma metabolism. Molecular BioSystems, 2016, 12, 1496-1506.	2.9	21
269	Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics. Cell Reports, 2016, 16, 878-895.	2.9	21
270	Improved production of fatty acids by <i>Saccharomyces cerevisiae</i> through screening a cDNA library from the oleaginous yeast <i>Yarrowia lipolytica</i> . FEMS Yeast Research, 2016, 16, fov108.	1.1	21

#	Article	IF	CITATIONS
271	Plasma Glycosaminoglycans as Diagnostic and Prognostic Biomarkers in Surgically Treated Renal Cell Carcinoma. European Urology Oncology, 2018, 1, 364-377.	2.6	21
272	Expression of cocoa genes in Saccharomyces cerevisiae improves cocoa butter production. Microbial Cell Factories, 2018, 17, 11.	1.9	21
273	Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast. AMB Express, 2018, 8, 37.	1.4	21
274	Yeast based biorefineries for oleochemical production. Current Opinion in Biotechnology, 2021, 67, 26-34.	3.3	21
275	Quantifying absolute gene expression profiles reveals distinct regulation of central carbon metabolism genes in yeast. ELife, 2021, 10, .	2.8	21
276	Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion. Microbial Cell Factories, 2021, 20, 134.	1.9	21
277	Yeast synthetic biology advances biofuel production. Current Opinion in Microbiology, 2022, 65, 33-39.	2.3	21
278	RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH. Microbial Cell Factories, 2015, 14, 143.	1.9	20
279	Reconstruction of 24 <i>Penicillium</i> genomeâ€scale metabolic models shows diversity based on their secondary metabolism. Biotechnology and Bioengineering, 2018, 115, 2604-2612.	1.7	20
280	Increasing jojoba-like wax ester production in Saccharomyces cerevisiae by enhancing very long-chain, monounsaturated fatty acid synthesis. Microbial Cell Factories, 2019, 18, 49.	1.9	20
281	Predictive models of eukaryotic transcriptional regulation reveals changes in transcription factor roles and promoter usage between metabolic conditions. Nucleic Acids Research, 2019, 47, 4986-5000.	6.5	20
282	Sources of variation in cell-type RNA-Seq profiles. PLoS ONE, 2020, 15, e0239495.	1.1	20
283	Multiscale models quantifying yeast physiology: towards a whole-cell model. Trends in Biotechnology, 2022, 40, 291-305.	4.9	20
284	Genome-scale modeling of yeast metabolism: retrospectives and perspectives. FEMS Yeast Research, 2022, 22, .	1.1	20
285	Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain. Microbial Cell Factories, 2015, 14, 116.	1.9	19
286	Adaptive Evolution of Phosphorus Metabolism in <i>Prochlorococcus</i> . MSystems, 2016, 1, .	1.7	19
287	Identification of genes involved in shea butter biosynthesis from Vitellaria paradoxa fruits through transcriptomics and functional heterologous expression. Applied Microbiology and Biotechnology, 2019, 103, 3727-3736.	1.7	19
288	Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microbial Cell Factories, 2020, 19, 226.	1.9	19

#	Article	IF	CITATIONS
289	Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints. Nature Communications, 2022, 13, .	5.8	18
290	Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth. FEMS Yeast Research, 2015, 15, fov024.	1.1	17
291	CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
292	Yeast metabolic innovations emerged via expanded metabolic network and gene positive selection. Molecular Systems Biology, 2021, 17, e10427.	3.2	17
293	Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in YeastSaccharomyces cerevisiae. International Journal of Genomics, 2014, 2014, 1-14.	0.8	16
294	Engineering lipid droplet assembly mechanisms for improved triacylglycerol accumulation in Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	1.1	16
295	Construction of miniâ€chemostats for highâ€throughput strain characterization. Biotechnology and Bioengineering, 2019, 116, 1029-1038.	1.7	16
296	Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production. Nature Chemical Biology, 2020, 16, 197-205.	3.9	16
297	A novel yeast hybrid modeling framework integrating Boolean and enzyme-constrained networks enables exploration of the interplay between signaling and metabolism. PLoS Computational Biology, 2021, 17, e1008891.	1.5	16
298	Microbial production of chemicals driven by CRISPR-Cas systems. Current Opinion in Biotechnology, 2022, 73, 34-42.	3.3	16
299	Big data in yeast systems biology. FEMS Yeast Research, 2019, 19, .	1.1	15
300	Applications of Genome-Wide Screening and Systems Biology Approaches in Drug Repositioning. Cancers, 2020, 12, 2694.	1.7	14
301	Bioprospecting Through Cloning of Whole Natural Product Biosynthetic Gene Clusters. Frontiers in Bioengineering and Biotechnology, 2020, 8, 526.	2.0	14
302	Production of 10-methyl branched fatty acids in yeast. Biotechnology for Biofuels, 2021, 14, 12.	6.2	14
303	Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges. Methods in Molecular Biology, 2019, 2049, 329-345.	0.4	14
304	A network-based approach reveals the dysregulated transcriptional regulation in non-alcoholic fatty liver disease. IScience, 2021, 24, 103222.	1.9	14
305	Mapping of Nonhomologous End Joining-Mediated Integration Facilitates Genome-Scale Trackable Mutagenesis in <i>Yarrowia lipolytica</i> . ACS Synthetic Biology, 2022, 11, 216-227.	1.9	14
306	Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2015, 15, fov070.	1.1	13

#	Article	IF	CITATIONS
307	Six Tissue Transcriptomics Reveals Specific Immune Suppression in Spleen by Dietary Polyunsaturated Fatty Acids. PLoS ONE, 2016, 11, e0155099.	1.1	13
308	Benchmarking accuracy and precision of intensityâ€based absolute quantification of protein abundances in <i>Saccharomyces cerevisiae</i> . Proteomics, 2021, 21, e2000093.	1.3	13
309	Analysis of normal levels of free glycosaminoglycans in urine and plasma in adults. Journal of Biological Chemistry, 2022, 298, 101575.	1.6	13
310	Kiwi: a tool for integration and visualization of network topology and gene-set analysis. BMC Bioinformatics, 2014, 15, 408.	1.2	12
311	Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity. Biochemical and Biophysical Research Communications, 2016, 478, 746-751.	1.0	12
312	Modular Pathway Rewiring of Yeast for Amino Acid Production. Methods in Enzymology, 2018, 608, 417-439.	0.4	12
313	The pan-genome of Saccharomyces cerevisiae. FEMS Yeast Research, 2019, 19, .	1.1	12
314	Comparative Transcriptome Analysis Shows Conserved Metabolic Regulation during Production of Secondary Metabolites in Filamentous Fungi. MSystems, 2019, 4, .	1.7	12
315	Different Routes of Protein Folding Contribute to Improved Protein Production in Saccharomyces cerevisiae. MBio, 2020, 11, .	1.8	12
316	Strategies and challenges with the microbial conversion of methanol to highâ€value chemicals. Biotechnology and Bioengineering, 2021, 118, 3655-3668.	1.7	12
317	Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast. Scientific Reports, 2016, 6, 27942.	1.6	11
318	Selection of complementary foods based on optimal nutritional values. Scientific Reports, 2017, 7, 5413.	1.6	11
319	Integrated analysis of the yeast NADPH-regulator Stb5 reveals distinct differences in NADPH requirements and regulation in different states of yeast metabolism. FEMS Yeast Research, 2018, 18, .	1.1	11
320	ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast. Nucleic Acids Research, 2019, 47, 7825-7841.	6.5	11
321	Harnessing β-estradiol inducible expression system to overproduce nervonic acid in Saccharomyces cerevisiae. Process Biochemistry, 2020, 92, 37-42.	1.8	11
322	Yeast has evolved to minimize protein resource cost for synthesizing amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
323	Prediction of drug candidates for clear cell renal cell carcinoma using a systems biology-based drug repositioning approach. EBioMedicine, 2022, 78, 103963.	2.7	11
324	Hyperinsulinemia Is Highly Associated With Markers of Hepatocytic Senescence in Two Independent Cohorts. Diabetes, 2022, 71, 1929-1936.	0.3	11

#	Article	IF	CITATIONS
325	Finding directionality and gene-disease predictions in disease associations. BMC Systems Biology, 2015, 9, 35.	3.0	10
326	Physiological and transcriptional characterization of <i>Saccharomyces cerevisiae</i> engineered for production of fatty acid ethyl esters. FEMS Yeast Research, 2016, 16, fov105.	1.1	10
327	Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity. Applied Microbiology and Biotechnology, 2017, 101, 4837-4851.	1.7	10
328	Exploiting offâ€ŧargeting in guideâ€ <scp>RNA</scp> s for <scp>CRISPR</scp> systems for simultaneous editing of multiple genes. FEBS Letters, 2017, 591, 3288-3295.	1.3	10
329	Impact of forced fatty acid synthesis on metabolism and physiology of Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	1.1	10
330	Carbohydrate active enzymes are affected by diet transition from milk to solid food in infant gut microbiota. FEMS Microbiology Ecology, 2019, 95, .	1.3	10
331	<i>Saccharomyces cerevisiae</i> displays a stable transcription start site landscape in multiple conditions. FEMS Yeast Research, 2019, 19, .	1.1	10
332	Exercise-Mediated Lowering of Glutamine Availability Suppresses Tumor Growth and Attenuates Muscle Wasting. IScience, 2020, 23, 100978.	1.9	10
333	GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 1328-1337.	1.9	10
334	Chimeric synthetic pathways. Nature Chemical Biology, 2011, 7, 195-196.	3.9	9
335	Systematic inference of functional phosphorylation events in yeast metabolism. Bioinformatics, 2017, 33, 1995-2001.	1.8	9
336	Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast <i>Brettanomyces bruxellensis</i> . FEMS Microbiology Letters, 2019, 366, .	0.7	9
337	Classification of clear cell renal cell carcinoma based on PKM alternative splicing. Heliyon, 2020, 6, e03440.	1.4	9
338	Performance of Regression Models as a Function of Experiment Noise. Bioinformatics and Biology Insights, 2021, 15, 117793222110203.	1.0	9
339	Coutilization of glucose and acetate for the production of pyruvate by engineered Escherichia coli. Biochemical Engineering Journal, 2021, 170, 107990.	1.8	9
340	High-Throughput Microfluidics for the Screening of Yeast Libraries. Methods in Molecular Biology, 2018, 1671, 307-317.	0.4	8
341	Assembly and Analysis of the Genome Sequence of the Yeast Brettanomyces naardenensis CBS 7540. Microorganisms, 2019, 7, 489.	1.6	8
342	Chromosomal genome assembly of the ethanol production strain CBS 11270 indicates a highly dynamic genome structure in the yeast species Brettanomyces bruxellensis. PLoS ONE, 2019, 14, e0215077.	1.1	8

#	Article	IF	CITATIONS
343	Effects of overexpression of <i>STB5</i> in <i>Saccharomyces cerevisiae</i> on fatty acid biosynthesis, physiology and transcriptome. FEMS Yeast Research, 2019, 19, .	1.1	8
344	Molecular natural history of breast cancer: Leveraging transcriptomics to predict breast cancer progression and aggressiveness. Cancer Medicine, 2020, 9, 3551-3562.	1.3	8
345	Discovery of Functional Alternatively Spliced PKM Transcripts in Human Cancers. Cancers, 2021, 13, 348.	1.7	8
346	Genome-scale insights into the metabolic versatility of Limosilactobacillus reuteri. BMC Biotechnology, 2021, 21, 46.	1.7	8
347	Analytical performance of a standardized kit for mass spectrometry-based measurements of human glycosaminoglycans. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1177, 122761.	1.2	8
348	Stratification of patients with clear cell renal cell carcinoma to facilitate drug repositioning. IScience, 2021, 24, 102722.	1.9	8
349	Synthetic Biology Advanced Natural Product Discovery. Metabolites, 2021, 11, 785.	1.3	8
350	A Gene Co-Expression Network-Based Drug Repositioning Approach Identifies Candidates for Treatment of Hepatocellular Carcinoma. Cancers, 2022, 14, 1573.	1.7	8
351	Trehalose-6-phosphate synthase and stabilization of yeast glycolysis. FEMS Yeast Research, 2016, 16, fov100.	1.1	7
352	Yeast systems biology in understanding principles of physiology underlying complex human diseases. Current Opinion in Biotechnology, 2020, 63, 63-69.	3.3	7
353	The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae. Cell Biology International, 2020, 44, 1606-1615.	1.4	7
354	Improvement in the Current Therapies for Hepatocellular Carcinoma Using a Systems Medicine Approach. Advanced Biology, 2020, 4, e2000030.	3.0	7
355	Machine learning-based investigation of the cancer protein secretory pathway. PLoS Computational Biology, 2021, 17, e1008898.	1.5	7
356	Constraint-based modeling of yeast mitochondria reveals the dynamics of protein import and iron-sulfur cluster biogenesis. IScience, 2021, 24, 103294.	1.9	7
357	Editorial: The Impact of Systems Medicine on Human Health and Disease. Frontiers in Physiology, 2016, 7, 552.	1.3	6
358	In search for symmetries in the metabolism of cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 23-35.	6.6	6
359	Expression of fungal biosynthetic gene clusters in S. cerevisiae for natural product discovery. Synthetic and Systems Biotechnology, 2021, 6, 20-22.	1.8	6
360	Systematic analysis of overall survival and interactions between tumor mutations and drug treatment. Journal of Hematology and Oncology, 2016, 9, 15.	6.9	5

#	Article	IF	CITATIONS
361	Crystal structure of the multifunctional SAM-dependent enzyme Lepl provides insights into its catalytic mechanism. Biochemical and Biophysical Research Communications, 2019, 515, 255-260.	1.0	5
362	Metabolic Profiling and Compound-Class Identification Reveal Alterations in Serum Triglyceride Levels in Mice Immunized with Human Vaccine Adjuvant Alum. Journal of Proteome Research, 2020, 19, 269-278.	1.8	5
363	Revealing the Metabolic Alterations during Biofilm Development of Burkholderia cenocepacia Based on Genome-Scale Metabolic Modeling. Metabolites, 2021, 11, 221.	1.3	5
364	BUTTERFLY: addressing the pooled amplification paradox with unique molecular identifiers in single-cell RNA-seq. Genome Biology, 2021, 22, 174.	3.8	5
365	Identification of a novel gene required for competitive growth at high temperature in the thermotolerant yeast Kluyveromyces marxianus. Microbiology (United Kingdom), 2022, 168, .	0.7	5
366	Transcriptomic response of <i>Saccharomyces cerevisiae</i> to octanoic acid production. FEMS Yeast Research, 2021, 21, .	1.1	4
367	A bioinformatic pipeline to analyze ChIP-exo datasets. Biology Methods and Protocols, 2019, 4, bpz011.	1.0	3
368	Informing Pharmacokinetic Models With Physiological Data: Oral Population Modeling of L-Serine in Humans. Frontiers in Pharmacology, 2021, 12, 643179.	1.6	3
369	Networking in metabolism and human disease. Oncotarget, 2015, 6, 15708-15709.	0.8	3
370	Dynamic Control Strategy to Produce Riboflavin with Lignocellulose Hydrolysate in the Thermophile <i>Geobacillus thermoglucosidasius</i> . ACS Synthetic Biology, 2022, 11, 2163-2174.	1.9	3
371	A dedicated database system for handling multi-level data in systems biology. Source Code for Biology and Medicine, 2014, 9, 17.	1.7	2
372	Maintaining a strong yeast research community. FEMS Yeast Research, 2014, 14, 527-528.	1.1	2
373	Metabolism: Built on stable catalysts. Nature Microbiology, 2017, 2, 17085.	5.9	2
374	Evolution of the Metabolic Engineering Community. Metabolic Engineering, 2018, 48, A1-A2.	3.6	2
375	A single chromosome strain of S. cerevisiae exhibits diminished ethanol metabolism and tolerance. BMC Genomics, 2021, 22, 688.	1.2	2
376	DSAVE: Detection of misclassified cells in single-cell RNA-Seq data. PLoS ONE, 2020, 15, e0243360.	1.1	2
377	Multi-omics analyses of the transition to the Crabtree effect in S. cerevisiae reveals a key role for the citric acid shuttle. FEMS Yeast Research, 2022, 22, .	1.1	2
378	Antibiotic Lethality Is Impacted by Nutrient Availabilities: New Insights from Machine Learning. Cell, 2019, 177, 1373-1374.	13.5	1

#	Article	IF	CITATIONS
379	Turnover Dependent Phenotypic Simulation: A Quantitative Constraint-Based Simulation Method That Accommodates All Main Strain Design Strategies. ACS Synthetic Biology, 2019, 8, 976-988.	1.9	1
380	The transcription factor Leu3 shows differential binding behavior in response to changing leucine availability. FEMS Microbiology Letters, 2020, 367, .	0.7	1
381	Draft Genome Sequences of Five Fungal Strains Isolated from Kefir. Microbiology Resource Announcements, 2021, 10, e0019521.	0.3	1
382	The yeastGemMap: A process diagram to assist yeast systemsâ€metabolic studies. Biotechnology and Bioengineering, 2021, 118, 4800-4814.	1.7	1
383	FEMS yeast research: the yeast community journal. FEMS Yeast Research, 2015, 15, .	1.1	0
384	Editorial: Where is scientific publishing heading?. FEMS Yeast Research, 2017, 17, .	1.1	0
385	Editorial: yeast synthetic biology. FEMS Yeast Research, 2020, 20, .	1.1	0
386	Rational gRNA design based on transcription factor binding data. Synthetic Biology, 2021, 6, ysab014.	1.2	0
387	Characterization of cross-species transcription and splicing from <i>Penicillium</i> to <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	0