Zoheb Karim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4405109/publications.pdf

Version: 2024-02-01

394421 395702 1,697 42 19 citations h-index g-index papers

43 43 43 2061 all docs docs citations times ranked citing authors

33

#	Article	IF	CITATIONS
1	Chemo-enzymatic functionalized sustainable cellulosic membranes: Impact of regional selectivity on ions capture and antifouling behavior. Carbohydrate Polymers, 2022, 278, 118937.	10.2	1
2	Upscaled engineered functional microfibrillated cellulose flat sheet membranes for removing charged water pollutants. Separation and Purification Technology, 2022, 289, 120745.	7.9	7
3	Polysaccharides., 2021,, 1-14.		1
4	Microscopic Hybrid Membranes Made of Cellulose-Based Materials Tuned for Removing Metal Ions from Industrial Effluents. ACS Applied Polymer Materials, 2021, 3, 3733-3746.	4.4	9
5	Poly(lactic acid)/poly(butylene succinate) dual-layer membranes with cellulose nanowhisker for heavy metal ion separation. International Journal of Biological Macromolecules, 2021, 192, 654-664.	7.5	14
6	Role of functional groups in the production of self-assembled microfibrillated cellulose hybrid frameworks and influence on separation mechanisms of dye from aqueous medium. International Journal of Biological Macromolecules, 2020, 155, 1541-1552.	7.5	4
7	Controlled retention and drainage of microfibrillated cellulose in continuous paper production. New Journal of Chemistry, 2020, 44, 13796-13806.	2.8	8
8	<i>CelluPhot</i> : Hybrid Celluloseâ^'Bismuth Oxybromide Membrane for Pollutant Removal. ACS Applied Materials & Distribution (2008) 12, 42891-42901.	8.0	29
9	Enhanced sieving of cellulosic microfiber membranes <i>via</i> tuning of interlayer spacing. Environmental Science: Nano, 2020, 7, 2941-2952.	4.3	9
10	Nanocellulose and nanohydrogel matrices as sustainable biomass materials: structure, properties, present status, and future prospects in construction and other engineering., 2020,, 177-195.		2
11	Morphological, Physiochemical and Thermal Properties of Microcrystalline Cellulose (MCC) Extracted from Bamboo Fiber. Molecules, 2020, 25, 2824.	3.8	57
12	Processing-Structure-Property Correlation Understanding of Microfibrillated Cellulose Based Dimensional Structures for Ferric Ions Removal. Scientific Reports, 2019, 9, 10277.	3.3	17
13	Morphological, physico-chemical, and thermal properties of cellulose nanowhiskers from roselle fibers. Cellulose, 2019, 26, 6599-6613.	4.9	17
14	Use of Nanostructured Polymer in the Delivery of Drugs for Cancer Therapy. , 2019, , 261-276.		5
15	Cellulose Nanocrystals-Based Nanocomposites. , 2019, , 49-65.		7
16	Biocomposites., 2019,, 197-215.		48
17	All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals. Cellulose, 2018, 25, 3011-3023.	4.9	75
18	Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. International Journal of Biological Macromolecules, 2018, 114, 54-63.	7. 5	138

#	Article	IF	CITATIONS
19	Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Critical Reviews in Biotechnology, 2017, 37, 355-370.	9.0	85
20	In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Advances, 2017, 7, 5232-5241.	3.6	120
21	Green Composites: Versatile Material for Future. Green Energy and Technology, 2017, , 29-44.	0.6	23
22	Isolation and Surface Modification of Nanocellulose: Necessity of Enzymes over Chemicals. ChemBioEng Reviews, 2017, 4, 289-303.	4.4	44
23	Bacterial cellulose., 2017,, 327-340.		2
24	Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture. Journal of Membrane Science, 2016, 514, 418-428.	8.2	172
25	Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. International Journal of Environmental Science and Technology, 2016, 13, 1861-1872.	3.5	104
26	High-flux affinity membranes based on cellulose nanocomposites for removal of heavy metal ions from industrial effluents. RSC Advances, 2016, 6, 20644-20653.	3.6	84
27	Immobilization of horseradish peroxidase on \hat{i}^2 -cyclodextrin-capped silver nanoparticles: Its future aspects in biosensor application. Preparative Biochemistry and Biotechnology, 2016, 46, 321-327.	1.9	14
28	Nanocellulose and Nanochitin in Membrane Applications. Materials and Energy, 2014, , 247-259.	0.1	2
29	Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: Removal of dyes from water. Carbohydrate Polymers, 2014, 112, 668-676.	10.2	308
30	Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Industrial Crops and Products, 2014, 58, 212-219.	5.2	83
31	Low Concentration of Silver Nanoparticles Not Only Enhances the Activity of Horseradish Peroxidase but Alter the Structure Also. PLoS ONE, 2012, 7, e41422.	2.5	38
32	A \hat{l}^2 -cyclodextrinâ \in "chitosan complex as the immobilization matrix for horseradish peroxidase and its application for the removal of azo dyes from textile effluent. International Biodeterioration and Biodegradation, 2012, 72, 10-17.	3.9	52
33	Redox-mediated polymerization and removal of benzidine from model wastewater catalyzed by immobilized peroxidase. African Journal of Biotechnology, 2012, 11 , .	0.6	0
34	Oxidative degradation and polymerization of methyl parathion catalyzed by fenugreek (<i>Trigonella) Tj ETQq0 0 392-398.</i>	0 rgBT /0 2.3	verlock 10 T 2
35	Removal of benzidine from polluted water by soluble and immobilized peroxidase in batch processes and continuous horizontal bed reactor. Environmental Technology (United Kingdom), 2011, 32, 83-91.	2.2	13
36	Remediation of model wastewater polluted with methyl parathion by reverse micelle entrapped peroxidase. Water Quality Research Journal of Canada, 2011, 46, 345-354.	2.7	0

ZOHEB KARIM

#	Article	IF	CITATION
37	Decolorization of Textile Effluent by Soluble Fenugreek (Trigonella foenum-graecum L) Seeds Peroxidase. Water, Air, and Soil Pollution, 2010, 212, 319-328.	2.4	21
38	Removal of anthracene from model wastewater by immobilized peroxidase from Momordica charantia in batch process as well as in a continuous spiral-bed reactor. Journal of Molecular Catalysis B: Enzymatic, 2010, 66, 302-310.	1.8	21
39	Application of fly ash adsorbed peroxidase for the removal of bisphenol A in batch process and continuous reactor: Assessment of genotoxicity of its product. Food and Chemical Toxicology, 2010, 48, 3385-3390.	3.6	23
40	Guaiacol-mediated oxidative degradation and polymerization of bisphenol A catalyzed by bitter gourd (Momordica charantia) peroxidase. Journal of Molecular Catalysis B: Enzymatic, 2009, 59, 185-189.	1.8	17
41	Redox-mediated oxidation and removal of aromatic amines from polluted water by partially purified bitter gourd (Momordica charantia) peroxidase. International Biodeterioration and Biodegradation, 2009, 63, 587-593.	3.9	21
42	Crystalline nanocellulose based sustainable nanoscopic composite membrane production: removal of metal ions from water. Cellulose, 0 , 1 .	4.9	0