Kazuhiko Ishihara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4404968/publications.pdf Version: 2024-02-01

Κλζιμικό Ισμιμλάλ

#	Article	IF	CITATIONS
1	Preparation of Phospholipid Polylners and Their Properties as Polymer Hydrogel Membranes. Polymer Journal, 1990, 22, 355-360.	1.3	1,041
2	Why do phospholipid polymers reduce protein adsorption?. Journal of Biomedical Materials Research Part B, 1998, 39, 323-330.	3.0	923
3	Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nature Materials, 2004, 3, 829-836.	13.3	528
4	Protein adsorption from human plasma is reduced on phospholipid polymers. Journal of Biomedical Materials Research Part B, 1991, 25, 1397-1407.	3.0	433
5	Hemocompatibility of human whole blood on polymers with a phospholipid polar group and its mechanism. Journal of Biomedical Materials Research Part B, 1992, 26, 1543-1552.	3.0	402
6	Wettability and Antifouling Behavior on the Surfaces of Superhydrophilic Polymer Brushes. Langmuir, 2012, 28, 7212-7222.	1.6	376
7	Reduced thrombogenicity of polymers having phospholipid polar groups. Journal of Biomedical Materials Research Part B, 1990, 24, 1069-1077.	3.0	375
8	Perparation of 2-Methacryloyloxyethyl Phosphorylcholine Copolymers with Alkyl Methacrylates and Their Blood Compatibility Polymer Journal, 1992, 24, 1259-1269.	1.3	348
9	Adsorption of Fibrinogen and Lysozyme on Silicon Grafted with Poly(2-methacryloyloxyethyl) Tj ETQq1 1 0.78431 5980-5987.	4 rgBT /Ov 1.6	verlock 10 342
10	Phosphorylcholine-containing polymers for biomedical applications. Analytical and Bioanalytical Chemistry, 2005, 381, 534-546.	1.9	306
11	Glucose Induced Permeation Control of Insulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase and a Poly(amine). Polymer Journal, 1984, 16, 625-631.	1.3	248
12	Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Science and Technology of Advanced Materials, 2012, 13, 064101.	2.8	245
13	Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter, 2007, 3, 740.	1.2	242
14	Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization. Biomaterials, 2006, 27, 5151-5160.	5.7	223
15	Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999, 20, 1553-1559.	5.7	210
16	Synthesis of Well-Defined Amphiphilic Block Copolymers Having Phospholipid Polymer Sequences as a Novel Biocompatible Polymer Micelle Reagent. Biomacromolecules, 2005, 6, 663-670.	2.6	188
17	Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids and Surfaces B: Biointerfaces, 2000, 18, 325-335.	2.5	183
18	Significance of Antibody Orientation Unraveled: Well-Oriented Antibodies Recorded High Binding Affinity. Analytical Chemistry, 2011, 83, 1969-1976.	3.2	183

#	Article	IF	CITATIONS
19	Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption. Colloids and Surfaces B: Biointerfaces, 2007, 54, 88-93.	2.5	158
20	Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization. Biomaterials, 1999, 20, 1545-1551.	5.7	157
21	Raman Spectroscopic Study on the Structure of Water in Aqueous Polyelectrolyte Solutionsâ€. Journal of Physical Chemistry B, 2000, 104, 11425-11429.	1.2	155
22	Revolutionary advances in 2â€methacryloyloxyethyl phosphorylcholine polymers as biomaterials. Journal of Biomedical Materials Research - Part A, 2019, 107, 933-943.	2.1	153
23	Inhibition of fibroblast cell adhesion on substrate by coating with 2-methacryloyloxyethyl phosphorylcholine polymers. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 1047-1061.	1.9	150
24	Bioinspired Self-Healing Hydrogel Based on Benzoxaborole-Catechol Dynamic Covalent Chemistry for 3D Cell Encapsulation. ACS Macro Letters, 2018, 7, 904-908.	2.3	149
25	Synthesis of phospholipid polymers having a urethane bond in the side chain as coating material on segmented polyurethane and their platelet adhesion-resistant properties. Biomaterials, 1995, 16, 873-879.	5.7	145
26	Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. Journal of Biomedical Materials Research Part B, 2003, 65A, 209-214.	3.0	145
27	Structure of Water in the Vicinity of Phospholipid Analogue Copolymers As Studied by Vibrational Spectroscopyâ€. Langmuir, 2003, 19, 10260-10266.	1.6	144
28	Soft contact lens biomaterials from bioinspired phospholipid polymers. Expert Review of Medical Devices, 2006, 3, 167-174.	1.4	144
29	Self-initiated surface grafting with poly(2-methacryloyloxyethyl phosphorylcholine) on poly(ether-ether-ketone). Biomaterials, 2010, 31, 1017-1024.	5.7	143
30	Protein resistant surfaces: Comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases, 2006, 1, 50-60.	0.6	141
31	Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials, 2009, 30, 4930-4938.	5.7	141
32	Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. Biomaterials, 2001, 22, 243-251.	5.7	128
33	Hemocompatibility on graft copolymers composed of poly(2-methacryloyloxyethyl) Tj ETQq1 1 0.784314 rgBT /C Materials Research Part B, 1994, 28, 225-232.)verlock 1 3.0	0 Tf 50 187 124
34	Blood-Compatible Surfaces with Phosphorylcholine-Based Polymers for Cardiovascular Medical Devices. Langmuir, 2019, 35, 1778-1787.	1.6	123
35	Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling–deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials, 2008, 29, 1367-1376.	5.7	121
36	Hydration of phosphorylcholine groups attached to highly swollen polymer hydrogels studied by thermal analysis. Polymer, 2008, 49, 4652-4657.	1.8	120

#	Article	IF	CITATIONS
37	Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend. Biomaterials, 2002, 23, 3897-3903.	5.7	119
38	Temporal and spatially controllable cell encapsulation using a water-soluble phospholipid polymer with phenylboronic acid moiety. Biomaterials, 2007, 28, 1770-1777.	5.7	113
39	Photoinduced phospholipid polymer grafting on Parylene film: Advanced lubrication and antibiofouling properties. Colloids and Surfaces B: Biointerfaces, 2007, 54, 67-73.	2.5	110
40	Critical update on 2â€methacryloyloxyethyl phosphorylcholine (MPC) polymer science. Journal of Applied Polymer Science, 2015, 132, .	1.3	109
41	Super-hydrophilic silicone hydrogels with interpenetrating poly(2-methacryloyloxyethyl) Tj ETQq1 1 0.784314 rg	gBT /Qverlo	$\operatorname{ock}_{108}^{10}$ Tf 50 5
42	Self-Initiated Surface Graft Polymerization of 2-Methacryloyloxyethyl Phosphorylcholine on Poly(ether ether ketone) by Photoirradiation. ACS Applied Materials & Interfaces, 2009, 1, 537-542.	4.0	107
43	Inducing Rapid Cellular Response on RGD-Binding Threaded Macromolecular Surfaces. Journal of the American Chemical Society, 2013, 135, 5513-5516.	6.6	107
44	Improved blood compatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups. I. Molecular design of polymeric additives and their functions. , 1996, 32, 391-399.		105
45	Preparation of nanoparticles composed with bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer. Biomaterials, 2001, 22, 1883-1889.	5.7	105
46	Polymeric Lipid Nanosphere Consisting of Water-Soluble Poly(2-methacryloyloxyethyl) Tj ETQq0 0 0 rgBT /Overl	ock 10 Tf ! 1.3	50 382 Td (ph 104
47	The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). Journal of Biomaterials Science, Polymer Edition, 2017, 28, 884-899.	1.9	103
48	Cell-penetrating macromolecules: Direct penetration of amphipathic phospholipid polymers across plasma membrane of living cells. Biomaterials, 2010, 31, 2380-2387.	5.7	100
49	Adhesive bone cement containing hydroxyapatite particle as bone compatible filler. Journal of Biomedical Materials Research Part B, 1992, 26, 937-945.	3.0	99
50	Wear resistance of artificial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: Comparisons with the effect of polyethylene cross-linking and ceramic femoral heads. Biomaterials, 2009, 30, 2995-3001.	5.7	98
51	Polymer Nanoparticles Covered with Phosphorylcholine Groups and Immobilized with Antibody for High-Affinity Separation of Proteins. Biomacromolecules, 2008, 9, 828-833.	2.6	97
52	Suppression of the inflammatory response from adherent cells on phospholipid polymers. Journal of Biomedical Materials Research Part B, 2003, 64A, 411-416.	3.0	92
53	Degradable Thermoresponsive Nanogels for Protein Encapsulation and Controlled Release. Bioconjugate Chemistry, 2012, 23, 75-83.	1.8	91
54	Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polymer Journal, 2015, 47, 585-597.	1.3	91

#	Article	IF	CITATIONS
55	Evaluation of 2-Methacryloyloxyethyl Phosphorylcholine Polymeric Nanoparticle for Immunoassay of C-Reactive Protein Detection. Analytical Chemistry, 2004, 76, 2649-2655.	3.2	90
56	Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications. Nano Today, 2011, 6, 61-74.	6.2	90
57	Control of insulin permeation through a polymer membrane with responsive function for glucose. Die Makromolekulare Chemie Rapid Communications, 1983, 4, 327-331.	1.1	89
58	Controlled release of organic substances using polymer membrane with responsive function for amino compounds. Journal of Applied Polymer Science, 1984, 29, 211-217.	1.3	89
59	Reduction of protein adsorption on well-characterized polymer brush layers with varying chemical structures. Colloids and Surfaces B: Biointerfaces, 2010, 81, 350-357.	2.5	88
60	Biomimetic hydration lubrication with various polyelectrolyte layers on cross-linked polyethylene orthopedic bearing materials. Biomaterials, 2012, 33, 4451-4459.	5.7	88
61	Dimensions of a Free Linear Polymer and Polymer Immobilized on Silica Nanoparticles of a Zwitterionic Polymer in Aqueous Solutions with Various Ionic Strengths. Langmuir, 2008, 24, 8772-8778.	1.6	86
62	Reduction of surface-induced platelet activation on phospholipid polymer. Journal of Biomedical Materials Research Part B, 1997, 36, 508-515.	3.0	83
63	Reduced Protein Adsorption on Novel Phospholipid Polymers. Journal of Biomaterials Applications, 1998, 13, 111-127.	1.2	80
64	Poly(ether-ether-ketone) orthopedic bearing surface modified byÂself-initiated surface grafting of poly(2-methacryloyloxyethyl phosphorylcholine). Biomaterials, 2013, 34, 7829-7839.	5.7	80
65	The effect of the chemical structure of the phospholipid polymer on fibronectin adsorption and fibroblast adhesion on the gradient phospholipid surface. Biomaterials, 1999, 20, 2185-2191.	5.7	79
66	Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids and Surfaces B: Biointerfaces, 2010, 79, 357-364.	2.5	79
67	Surface modification by 2-methacryloyloxyethyl phosphorylcholine coupled to a photolabile linker for cell micropatterning. Biomaterials, 2009, 30, 1413-1420.	5.7	77
68	Photo-immobilization of a phospholipid polymer for surface modification. Biomaterials, 2005, 26, 1381-1388.	5.7	76
69	RAFT Synthesis and Stimulus-Induced Self-Assembly in Water of Copolymers Based on the Biocompatible Monomer 2-(Methacryloyloxy)ethyl Phosphorylcholine. Biomacromolecules, 2009, 10, 950-958.	2.6	76
70	Lubricity and stability of poly(2-methacryloyloxyethyl phosphorylcholine) polymer layer on Co–Cr–Mo surface for hemi-arthroplasty to prevent degeneration of articular cartilage. Biomaterials, 2010, 31, 658-668.	5.7	76
71	Water structure and improved mechanical properties of phospholipid polymer hydrogel with phosphorylcholine centered intermolecular cross-linker. Polymer, 2006, 47, 1390-1396.	1.8	75
72	Bioinspired interface for nanobiodevices based on phospholipid polymer chemistry. Journal of the Royal Society Interface, 2009, 6, S279-91.	1.5	75

#	Article	IF	CITATIONS
73	Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. ACS Applied Materials & Interfaces, 2015, 7, 17489-17498.	4.0	75
74	Synthesis of sequence-controlled copolymers from extremely polar and apolar monomers by living radical polymerization and their phase-separated structures. Journal of Polymer Science Part A, 2005, 43, 6073-6083.	2.5	74
75	Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and selfâ€initiated graft polymerization of 2â€methacryloyloxyethyl phosphorylcholine. Journal of Biomedical Materials Research - Part A, 2014, 102, 1342-1349.	2.1	74
76	Methacrylate polymer layers bearing poly(ethylene oxide) and phosphorylcholine side chains as non-fouling surfaces: In vitro interactions with plasma proteins and platelets. Acta Biomaterialia, 2011, 7, 3692-3699.	4.1	73
77	Effects of phospholipid adsorption on nonthrombogenicity of polymer with phospholipid polar group. Journal of Biomedical Materials Research Part B, 1993, 27, 1309-1314.	3.0	72
78	Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer. Journal of Biomedical Materials Research Part B, 2002, 63, 333-341.	3.0	71
79	Near-Infrared Photoluminescent Carbon Nanotubes for Imaging of Brown Fat. Scientific Reports, 2017, 7, 44760.	1.6	71
80	The vascular prosthesis without pseudointima prepared by antithrombogenic phospholipid polymer. Biomaterials, 2002, 23, 1455-1459.	5.7	70
81	Physical properties and blood compatibility of surface-modified segmented polyurethane by semi-interpenetrating polymer networks with a phospholipid polymer. Biomaterials, 2002, 23, 4881-4887.	5.7	70
82	Improvement of blood compatibility on cellulose dialysis membrane I. Grafting of 2-methacryloyloxyethyl phosphorylcholine on to a cellulose membrane surface. Biomaterials, 1992, 13, 145-149.	5.7	69
83	Rapid Development of Hydrophilicity and Protein Adsorption Resistance by Polymer Surfaces Bearing Phosphorylcholine and Naphthalene Groups. Langmuir, 2008, 24, 10340-10344.	1.6	69
84	Short-termin vivo evaluation of small-diameter vascular prosthesis composed of segmented poly(etherurethane)/2-methacryloyloxyethyl phosphorylcholine polymer blend. Journal of Biomedical Materials Research Part B, 1998, 43, 15-20.	3.0	68
85	Preparation of cross-linked biocompatible poly(2-methacryloyloxyethyl phosphorylcholine) gel and its strange swelling behavior in water/ethanol mixture. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 213-224.	1.9	68
86	The prevention of peritendinous adhesions by a phospholipid polymer hydrogel formed in situ by spontaneous intermolecular interactions. Biomaterials, 2010, 31, 4009-4016.	5.7	68
87	Improvement of blood compatibility on cellulose dialysis membrane2. Blood compatibility of phospholipid polymer grafted cellulose membrane. Biomaterials, 1992, 13, 235-239.	5.7	67
88	Cell adhesion on phase-separated surface of block copolymer composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(dimethylsiloxane). Biomaterials, 2009, 30, 5330-5340.	5.7	67
89	Enhanced wear resistance of modified cross-linked polyethylene by grafting with poly(2-methacryloyloxyethyl phosphorylcholine). Journal of Biomedical Materials Research - Part A, 2007, 82A, 10-17.	2.1	66
90	Bone morphogenetic protein encapsulated with a biodegradable and biocompatible polymer. , 1996, 32, 433-438.		65

#	Article	IF	CITATIONS
91	Microfluidic flow control on charged phospholipidpolymer interface. Lab on A Chip, 2007, 7, 199-206.	3.1	64
92	Cell Adhesion and Morphology in Porous Scaffold Based on Enantiomeric Poly(lactic acid) Graft-type Phospholipid Polymers. Biomacromolecules, 2002, 3, 1375-1383.	2.6	62
93	Artificial Cell Membrane-Covered Nanoparticles Embedding Quantum Dots as Stable and Highly Sensitive Fluorescence Bioimaging Probes. Biomacromolecules, 2008, 9, 3252-3257.	2.6	62
94	Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties. Langmuir, 2019, 35, 1621-1630.	1.6	62
95	Preservation of platelet function on 2-methacryloyloxyethyl phosphorylcholine-graft polymer as compared to various water-soluble graft polymers. Journal of Biomedical Materials Research Part B, 2001, 57, 72-78.	3.0	61
96	High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor. Biomaterials, 2006, 27, 1955-1962.	5.7	61
97	Photo-induced change in wettability and binding ability of azoaromatic polymers. Journal of Applied Polymer Science, 1982, 27, 239-245.	1.3	60
98	Photoinduced swelling control of amphiphilic azoaromatic polymer membrane. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 121-128.	0.8	60
99	Graft copolymerization of 2â€methacryloyloxyethyl phosphorylcholine to cellulose in homogeneous media using atom transfer radical polymerization for providing new hemocompatible coating materials. Journal of Polymer Science Part A, 2008, 46, 3306-3313.	2.5	59
100	High lubricious surface of cobalt–chromium–molybdenum alloy prepared by grafting poly(2-methacryloyloxyethyl phosphorylcholine). Biomaterials, 2007, 28, 3121-3130.	5.7	58
101	Bioconjugated Phospholipid Polymer Biointerface for Enzyme-Linked Immunosorbent Assay. Biomacromolecules, 2008, 9, 403-407.	2.6	58
102	Impact of the nature, size and chain topologies of carbohydrate–phosphorylcholine polymeric gene delivery systems. Biomaterials, 2012, 33, 7858-7870.	5.7	58
103	Improvement of blood compatibility on cellulose dialysis membrane. III. Synthesis and performance of water-soluble cellulose grafted with phospholipid polymer as coating material on cellulose dialysis membrane. Journal of Biomedical Materials Research Part B, 1995, 29, 181-188.	3.0	57
104	Surface mobility of polymers having phosphorylcholine groups connected with various bridging units and their protein adsorption-resistance properties. Colloids and Surfaces B: Biointerfaces, 2003, 28, 53-62.	2.5	57
105	Modeling of swelling and drug release behavior of spontaneously forming hydrogels composed of phospholipid polymers. International Journal of Pharmaceutics, 2004, 275, 259-269.	2.6	57
106	Designing dynamic surfaces for regulation of biological responses. Soft Matter, 2012, 8, 5477.	1.2	57
107	Chain dimension of polyampholytes in solution and immobilized brush states. Polymer Journal, 2012, 44, 121-130.	1.3	57
108	Neutron reflectivity study of the swollen structure of polyzwitterion and polyeletrolyte brushes in aqueous solution. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1673-1686.	1.9	57

#	Article	IF	CITATIONS
109	Improved blood compatibility of segmented polyurethane by polymeric additives having phospholipid polar group. II. Dispersion state of the polymeric additive and protein adsorption on the surface. Journal of Biomedical Materials Research Part B, 1996, 32, 401-408.	3.0	56
110	In situ modification on cellulose acetate hollow fiber membrane modified with phospholipid polymer for biomedical application. Journal of Membrane Science, 2005, 249, 133-141.	4.1	56
111	Protein adsorption resistance and oxygen permeability of chemically crosslinked phospholipid polymer hydrogel for ophthalmologic biomaterials. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 184-190.	1.6	56
112	An enzyme-immobilization method for integration of biofunctions on a microchip using a water-soluble amphiphilic phospholipid polymer having a reacting group. Lab on A Chip, 2004, 4, 4.	3.1	55
113	Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions. Journal of Biomedical Materials Research - Part A, 2005, 73A, 359-366.	2.1	55
114	Effects of mobility/immobility of surface modification by 2â€methacryloyloxyethyl phosphorylcholine polymer on the durability of polyethylene for artificial joints. Journal of Biomedical Materials Research - Part A, 2009, 90A, 362-371.	2.1	55
115	Intraperitoneal administration of paclitaxel solubilized with poly(2â€methacryloxyethyl) Tj ETQq1 1 0.784314 rg Cancer Science, 2009, 100, 1979-1985.	BT /Overlo 1.7	ock 10 Tf 50 5 55
116	Long-term hip simulator testing of the artificial hip joint bearing surface grafted with biocompatible phospholipid polymer. Journal of Orthopaedic Research, 2014, 32, 369-376.	1.2	55
117	Molecular Interaction Forces Generated during Protein Adsorption to Well-Defined Polymer Brush Surfaces. Langmuir, 2015, 31, 3108-3114.	1.6	55
118	Nano-scale surface modification of a segmented polyurethane with a phospholipid polymer. Biomaterials, 2004, 25, 5353-5361.	5.7	54
119	Effects of photo-induced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on physical properties of cross-linked polyethylene in artificial hip joints. Journal of Materials Science: Materials in Medicine, 2007, 18, 1809-1815.	1.7	54
120	Adsorption-Desorption of proteins on phospholipid polymer surfaces evaluated by dynamic contact angle measurement. Journal of Biomedical Materials Research Part B, 1995, 29, 381-387.	3.0	53
121	Sequential Enzymatic Reactions and Stability of Biomolecules Immobilized onto Phospholipid Polymer Nanoparticles. Biomacromolecules, 2006, 7, 171-175.	2.6	53
122	Photografting of 2-methacryloyloxyethyl phosphorylcholine from polydimethylsiloxane: Tunable protein repellency and lubrication property. Colloids and Surfaces B: Biointerfaces, 2008, 63, 64-72.	2.5	53
123	Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. Journal of Biomedical Materials Research Part B, 2000, 52, 701-708.	3.0	52
124	Platelet compatible blood filtration fabrics using a phosphorylcholine polymer having high surface mobility. Biomaterials, 2003, 24, 3599-3604.	5.7	52
125	The significance of hydrated surface molecular mobility in the control of the morphology of adhering fibroblasts. Biomaterials, 2013, 34, 3206-3214.	5.7	52
126	Evaluation of the durability andÂantiadhesive action of 2-methacryloyloxyethyl phosphorylcholine grafting on an acrylicÂresin denture base material. Journal of Prosthetic Dentistry, 2014, 112, 194-203.	1.1	52

#	Article	IF	CITATIONS
127	Small Diameter Vascular Prosthesis with a Nonthrombogenic Phospholipid Polymer Surface: Preliminary Study of a New Concept for Functioning in the Absence of Pseudo- or Neointima Formation. Artificial Organs, 2000, 24, 23-28.	1.0	51
128	Effect of water-soluble phospholipid polymers conjugated with papain on the enzymatic stability. Biomaterials, 2004, 25, 71-76.	5.7	51
129	Asymmetrically functional surface properties on biocompatible phospholipid polymer membrane for bioartificial kidney. Journal of Biomedical Materials Research - Part A, 2006, 77A, 19-27.	2.1	51
130	A Microfluidic Hydrogel Capable of Cell Preservation without Perfusion Culture under Cellâ€Based Assay Conditions. Advanced Materials, 2010, 22, 3017-3021.	11.1	51
131	The use of the mechanical microenvironment of phospholipid polymer hydrogels to control cell behavior. Biomaterials, 2013, 34, 5891-5896.	5.7	51
132	Synthesis of hydrophilic cross-linker having phosphorylcholine-like linkage for improvement of hydrogel properties. Polymer, 2004, 45, 7499-7504.	1.8	50
133	2006 FRANK STINCHFIELD AWARD: Grafting of Biocompatible Polymer for Longevity of Artificial Hip Joints. Clinical Orthopaedics and Related Research, 2006, 453, 58-63.	0.7	50
134	Preparation and Characterization of Polyion Complex Micelles with Phosphobetaine Shells. Langmuir, 2013, 29, 9651-9661.	1.6	50
135	Elastic Repulsion from Polymer Brush Layers Exhibiting High Protein Repellency. Langmuir, 2013, 29, 10752-10758.	1.6	50
136	Quantitative Evaluation of Interaction Force between Functional Groups in Protein and Polymer Brush Surfaces. Langmuir, 2014, 30, 2745-2751.	1.6	50
137	Controlled drug release from multilayered phospholipid polymer hydrogel on titanium alloy surface. Biomaterials, 2009, 30, 5201-5208.	5.7	49
138	Cartilage-mimicking, High-density Brush Structure Improves Wear Resistance of Crosslinked Polyethylene: A Pilot Study. Clinical Orthopaedics and Related Research, 2011, 469, 2327-2336.	0.7	49
139	Spherical Phospholipid Polymer Hydrogels for Cell Encapsulation Prepared with a Flow-Focusing Microfluidic Channel Device. Langmuir, 2012, 28, 2145-2150.	1.6	49
140	Stereocomplex Formation by Enantiomeric Poly(lactic acid) Graft-Type Phospholipid Polymers for Tissue Engineering. Biomacromolecules, 2002, 3, 1109-1114.	2.6	48
141	Prevention of Biofilm Formation with a Coating of 2-Methacryloyloxyethyl Phosphorylcholine Polymer. Journal of Veterinary Medical Science, 2008, 70, 167-173.	0.3	48
142	Detailed study of the reversible addition–fragmentation chain transfer polymerization and co-polymerization of 2-methacryloyloxyethyl phosphorylcholine. Polymer Chemistry, 2011, 2, 632-639.	1.9	48
143	Adhesion force of proteins against hydrophilic polymer brush surfaces. Reactive and Functional Polymers, 2011, 71, 350-355.	2.0	48
144	Reduction of Peritendinous Adhesions by Hydrogel Containing Biocompatible Phospholipid Polymer MPC for Tendon Repair. Journal of Bone and Joint Surgery - Series A, 2011, 93, 142-149.	1.4	48

#	Article	IF	CITATIONS
145	Reduced Blood Cell Adhesion on Polypropylene Substrates through a Simple Surface Zwitterionization. Langmuir, 2017, 33, 611-621.	1.6	48
146	Protein adsorption on biomedical polymers with a phosphorylcholine moiety adsorbed with phospholipid. Journal of Biomaterials Science, Polymer Edition, 1992, 3, 185-194.	1.9	47
147	Effect of reduced protein adsorption on platelet adhesion at the phospholipid polymer surfaces. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 151-163.	1.9	47
148	Effect of 2â€methacryloyloxyethyl phosphorylcholine concentration on photoâ€induced graft polymerization of polyethylene in reducing the wear of orthopaedic bearing surface. Journal of Biomedical Materials Research - Part A, 2008, 86A, 439-447.	2.1	47
149	Nanoscale evaluation of lubricity on well-defined polymer brush surfaces using QCM-D and AFM. Colloids and Surfaces B: Biointerfaces, 2009, 74, 350-357.	2.5	47
150	Well-Controlled Cationic Water-Soluble Phospholipid Polymerâ^'DNA Nanocomplexes for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 1228-1238.	1.8	47
151	The effect of the encapsulation of bacteria in redox phospholipid polymer hydrogels on electron transfer efficiency in living cell-based devices. Biomaterials, 2012, 33, 8221-8227.	5.7	47
152	Preparation of upper critical solution temperature (UCST) responsive diblock copolymers bearing pendant ureido groups and their micelle formation behavior in water. Soft Matter, 2015, 11, 5204-5213.	1.2	47
153	Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl) Tj ETQq1 1 0.784314 rgBT / adsorption resistance. Colloids and Surfaces B: Biointerfaces, 2016, 141, 507-512.	Overlock 1 2.5	10 Tf 50 427 47
154	Synthesis of polymers having a phospholipid polar group connected to a poly(oxyethylene) chain and their protein adsorption-resistance properties. Journal of Polymer Science Part A, 1996, 34, 199-205.	2.5	46
155	Improvement of blood compatibility on cellulose hemodialysis membrane: IV. Phospholipid polymer bonded to the membrane surface. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 271-282.	1.9	46
156	Design of functional hollow fiber membranes modified with phospholipid polymers for application in total hemopurification system. Biomaterials, 2005, 26, 5032-5041.	5.7	46
157	Superlubricious surface mimicking articular cartilage by grafting poly(2â€methacryloyloxyethyl) Tj ETQq1 1 0.784 2009, 91A, 730-741.	314 rgBT / 2.1	Overlock 10 46
158	Regulation of cell proliferation by multi-layered phospholipid polymer hydrogel coatings through controlled release of paclitaxel. Biomaterials, 2012, 33, 954-961.	5.7	46
159	Improvement of Hemocompatibility on a Cellulose Dialysis Membrane with a Novel Biomedical Polymer Having a Phospholipid Polar Group. Artificial Organs, 1994, 18, 559-564.	1.0	45
160	Degradation of phospholipid polymer hydrogel by hydrogen peroxide aiming at insulin release device. Biomaterials, 2003, 24, 5183-5190.	5.7	45
161	Stress response of adherent cells on a polymer blend surface composed of a segmented polyurethane and MPC copolymers. Journal of Biomedical Materials Research - Part A, 2006, 79A, 476-484.	2.1	45
162	Surface immobilization of biocompatible phospholipid polymer multilayered hydrogel on titanium alloy. Colloids and Surfaces B: Biointerfaces, 2008, 67, 216-223.	2.5	44

#	Article	IF	CITATIONS
163	Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing. Biosensors and Bioelectronics, 2009, 25, 609-614.	5.3	44
164	Suppression of Protein Adsorption on a Charged Phospholipid Polymer Interface. Biomacromolecules, 2009, 10, 267-274.	2.6	44
165	Extracellular Electron Transfer across Bacterial Cell Membranes via a Cytocompatible Redoxâ€Active Polymer. ChemPhysChem, 2013, 14, 2159-2163.	1.0	44
166	Multi-layered PLLA-nanosheets loaded with FGF-2 induce robust bone regeneration with controlled release in critical-sized mouse femoral defects. Acta Biomaterialia, 2019, 85, 172-179.	4.1	44
167	Synthesis of graft copolymers having phospholipid polar group by macromonomer method and their properties in water. Journal of Polymer Science Part A, 1994, 32, 859-867.	2.5	43
168	Platelet adhesion on the gradient surfaces grafted with phospholipid polymer. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 801-816.	1.9	43
169	The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. European Journal of Pharmaceutical Sciences, 2004, 23, 261-270	1.9	43
170	2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes. Biomaterials, 2010, 31, 6355-6362.	5.7	43
171	Hydrolyzed eggshell membrane immobilized on phosphorylcholine polymer supplies extracellular matrix environment for human dermal fibroblasts. Cell and Tissue Research, 2011, 345, 177-190.	1.5	43
172	Initial Cell Adhesion on Well-Defined Surface by Polymer Brush Layers with Varying Chemical Structures. ACS Biomaterials Science and Engineering, 2015, 1, 103-109.	2.6	43
173	Adhesive bone cement both to bone and metals: 4-META in MMA initiated with tri-n-butyl borane. Journal of Biomedical Materials Research Part B, 1989, 23, 1475-1482.	3.0	42
174	Establishing ultimate biointerfaces covered with phosphorylcholine groups. Colloids and Surfaces B: Biointerfaces, 2008, 65, 155-165.	2.5	42
175	Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices. Annals of Biomedical Engineering, 2010, 38, 1938-1953.	1.3	42
176	Polyelectrolyte and Antipolyelectrolyte Effects for Dual Salt-Responsive Interpenetrating Network Hydrogels. Biomacromolecules, 2019, 20, 3524-3534.	2.6	42
177	Tissue response to poly(l-lactic acid)-based blend with phospholipid polymer for biodegradable cardiovascular stents. Biomaterials, 2011, 32, 2241-2247.	5.7	41
178	Water-Soluble 2-Methacryloyloxyethyl Phosphorylcholine Copolymer as a Novel Synthetic Blocking Reagent in Immunoassay System. Polymer Journal, 2000, 32, 637-641.	1.3	40
179	Characterization of the Spontaneously Forming Hydrogels Composed of Water-Soluble Phospholipid Polymers. Biomacromolecules, 2002, 3, 100-105.	2.6	40
180	Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids and Surfaces B: Biointerfaces, 2009, 74, 96-102.	2.5	40

#	Article	IF	CITATIONS
181	Hollow Fiber Membrane Modification with Functional Zwitterionic Macromolecules for Improved Thromboresistance in Artificial Lungs. Langmuir, 2015, 31, 2463-2471.	1.6	40
182	Quick and simple modification of a poly(dimethylsiloxane) surface by optimized molecular design of the anti-biofouling phospholipid copolymer. Soft Matter, 2011, 7, 2968.	1.2	39
183	Mechanical force-based probing of intracellular proteins from living cells using antibody-immobilized nanoneedles. Biosensors and Bioelectronics, 2012, 31, 323-329.	5.3	39
184	Design of polymer membrane with permselectivity for water–ethanol mixture. II. Preparation of crosslinked poly(methyl acrylate) membrane with diethylene triamine and its permselectivity. Journal of Applied Polymer Science, 1985, 30, 179-188.	1.3	38
185	Stabilization of an antibody conjugated with enzyme by 2-methacryloyloxyethyl phosphorylcholine copolymer in enzyme-linked immunosorbent assay. , 1999, 47, 523-528.		38
186	Protein Adsorption-Resistant Hollow Fibers for Blood Purification. Artificial Organs, 2002, 26, 1014-1019.	1.0	38
187	Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels. Journal of Biomedical Materials Research - Part A, 2007, 80A, 45-54.	2.1	38
188	The role of recombinant human bone morphogenetic protein-2 in PLGA capsules at an extraskeletal site of the rat. , 1999, 45, 36-41.		37
189	Restoration of segmental bone defects in rabbit radius by biodegradable capsules containing recombinant human bone morphogenetic protein-2. , 2000, 50, 191-198.		37
190	Electroosmosis injection of blood serum into biocompatible microcapillary chip fabricated on quartz plate. Electrophoresis, 2001, 22, 341-347.	1.3	37
191	Dynamic motion of phosphorylcholine groups at the surface of poly(2-methacryloyloxyethyl) Tj ETQq1 1 0.7843. Science, 2004, 274, 465-471.	14 rgBT /O 5.0	verlock 10 Tf 37
192	Novel polymer biomaterials and interfaces inspired from cell membrane functions. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 268-275.	1.1	37
193	Dopamine Assisted Self-Cleaning, Antifouling, and Antibacterial Coating <i>via</i> Dynamic Covalent Interactions. ACS Applied Materials & Interfaces, 2022, 14, 9557-9569.	4.0	37
194	Photoresponse of the release behavior of an organic compound by a azoaromatic polymer device. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 881-884.	0.8	36
195	Efficient differentiation of stem cells encapsulated in a cytocompatible phospholipid polymer hydrogel with tunable physical properties. Biomaterials, 2015, 56, 86-91.	5.7	36
196	Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Research, 2009, 29, 1009-14.	0.5	36
197	In vitro and ex vivo blood compatibility study of 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer-coated hemodialysis hollow fibers. Journal of Artificial Organs, 2003, 6, 260-266.	0.4	35
198	Polyethylene/phospholipid polymer alloy as an alternative to poly(vinylchloride)-based materials. Biomaterials, 2004, 25, 1115-1122.	5.7	35

#	Article	IF	CITATIONS
199	Phospholipid polymer hydrogel microsphere modulates the cell cycle profile of encapsulated cells. Soft Matter, 2013, 9, 4628.	1.2	35
200	Biocompatible polymer alloy membrane for implantable artificial pancreas. Journal of Membrane Science, 2002, 208, 39-48.	4.1	34
201	Evaluation of the actin cytoskeleton state using an antibody-functionalized nanoneedle and an AFM. Biosensors and Bioelectronics, 2013, 40, 3-9.	5.3	34
202	Prevention of bacterial adhesion and biofilm formation on a vitamin E-blended, cross-linked polyethylene surface with a poly(2-methacryloyloxyethyl phosphorylcholine) layer. Acta Biomaterialia, 2015, 24, 24-34.	4.1	34
203	Efficacy of an MPC-BMA co-polymer as a nanotransporter for paclitaxel. Anticancer Research, 2007, 27, 1431-5.	0.5	34
204	Enhanced wear resistance of orthopaedic bearing due to the cross-linking of poly(MPC) graft chains induced by gamma-ray irradiation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 320-327.	1.6	33
205	Structure and Surface Properties of Highâ€density Polyelectrolyte Brushes at the Interface of Aqueous Solution. Macromolecular Symposia, 2009, 279, 79-87.	0.4	33
206	Single-cell attachment and culture method using a photochemical reaction in a closed microfluidic system. Biomicrofluidics, 2010, 4, 032208.	1.2	33
207	Synthesis of Photoreactive Phospholipid Polymers for Use in Versatile Surface Modification of Various Materials to Obtain Extreme Wettability. ACS Applied Materials & Interfaces, 2013, 5, 6832-6836.	4.0	33
208	Extracellular Electron Transfer Enhances Polyhydroxybutyrate Productivity in <i>Ralstonia eutropha</i> . Environmental Science and Technology Letters, 2014, 1, 40-43.	3.9	33
209	Synthesis of Highly Biocompatible and Temperature-Responsive Physical Gels for Cryopreservation and 3D Cell Culture. ACS Applied Bio Materials, 2018, 1, 356-366.	2.3	33
210	Polymeric Nanocarriers with Controlled Chain Flexibility Boost mRNA Delivery In Vivo through Enhanced Structural Fastening. Advanced Healthcare Materials, 2020, 9, e2000538.	3.9	33
211	Antifouling Silicone Hydrogel Contact Lenses with a Bioinspired 2-Methacryloyloxyethyl Phosphorylcholine Polymer Surface. ACS Omega, 2021, 6, 7058-7067.	1.6	33
212	Selective adhesion of platelets on a polyion complex composed of phospholipid polymers containing sulfonate groups and quarternary ammonium groups. Journal of Biomedical Materials Research Part B, 1994, 28, 1347-1355.	3.0	32
213	Antithrombogenic polymer alloy composed of 2-methacryloyloxyethyl phosphorylcholine polymer and segmented polyurethane. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 1183-1195.	1.9	32
214	UCST-Type Cononsolvency Behavior of Poly(2-methacryloxyethyl phosphorylcholine) in the Mixture of Water and Ethanol. Polymer Journal, 2008, 40, 479-483.	1.3	32
215	Sandwich-type PLLA-nanosheets loaded with BMP-2 induce bone regeneration in critical-sized mouse calvarial defects. Acta Biomaterialia, 2017, 59, 12-20.	4.1	32
216	Ectopic induction of cartilage and bone by bovine bone morphogenetic protein using a biodegradable polymeric reservoir. , 1996, 30, 1-4.		31

#	Article	IF	CITATIONS
217	Chemical modification of silk fibroin with 2-methacryloyloxyethyl phosphorylcholine I. Graft-polymerization onto fabric using ammonium persulfate and interaction between fabric and platelets. Journal of Applied Polymer Science, 1999, 73, 2541-2544.	1.3	31
218	New polymeric biomaterials — phospholipid polymers with a biocompatible surface. Frontiers of Medical and Biological Engineering: the International Journal of the Japan Society of Medical Electronics and Biological Engineering, 2000, 10, 83-95.	0.2	31
219	Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 631-644.	1.9	31
220	Regulation of Enzymeâ~'Substrate Complexation by a Substrate Conjugated with a Phospholipid Polymer. Biomacromolecules, 2004, 5, 858-862.	2.6	31
221	Dimension of Poly(2-methacryloyloxyethyl phosphorylcholine) in Aqueous Solutions with Various Ionic Strength. Chemistry Letters, 2006, 35, 1310-1311.	0.7	31
222	Antibody immobilization to phospholipid polymer layer on gold substrate of quartz crystal microbalance immunosensor. Colloids and Surfaces B: Biointerfaces, 2007, 55, 164-172.	2.5	31
223	Development of a method to evaluate caspase-3 activity in a single cell using a nanoneedle and a fluorescent probe. Biosensors and Bioelectronics, 2009, 25, 22-27.	5.3	31
224	Preparation and surface properties of polyrotaxane-containing tri-block copolymers as a design for dynamic biomaterials surfaces. Colloids and Surfaces B: Biointerfaces, 2012, 89, 223-227.	2.5	31
225	Biomimetic Interfaces Reveal Activation Dynamics of Câ€Reactive Protein in Local Microenvironments. Advanced Healthcare Materials, 2014, 3, 1733-1738.	3.9	31
226	Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells. Science and Technology of Advanced Materials, 2016, 17, 300-312.	2.8	31
227	Photo-induced change in surface free energy of azoaromatic polymers. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21, 1551-1555.	0.8	30
228	Amphiphilic Triblock Phospholipid Copolymers Bearing Phenylboronic Acid Groups for Spontaneous Formation of Hydrogels with Tunable Mechanical Properties. Macromolecules, 2014, 47, 3128-3135.	2.2	30
229	Surface functionalization of polytetrafluoroethylene substrate with hybrid processes comprising plasma treatment and chemical reactions. Colloids and Surfaces B: Biointerfaces, 2019, 173, 77-84.	2.5	30
230	Protein adsorption and platelet adhesion on polymer surfaces having phospholipid polar group connected with oxyethylene chain. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 91-102.	1.9	29
231	Graft copolymers having hydrophobic backbone and hydrophilic branches. XXX. Preparation of polystyrene-core nanospheres having a poly(2-methacryloyloxyethyl phosphorylcholine) corona. Journal of Polymer Science Part A, 2000, 38, 3052-3058.	2.5	29
232	Phosphorylcholine and Poly(D,L-lactic acid) Containing Copolymers as Substrates for Cell Adhesion. Artificial Organs, 2003, 27, 242-248.	1.0	29
233	Control of cell function on a phospholipid polymer having phenylboronic acid moiety. Biomedical Materials (Bristol), 2010, 5, 054101.	1.7	29
234	Effects of 3,4-dihydrophenyl groups in water-soluble phospholipid polymer on stable surface modification of titanium alloy. Colloids and Surfaces B: Biointerfaces, 2011, 88, 215-220.	2.5	29

#	Article	IF	CITATIONS
235	Fabrication of polymeric electron-transfer mediator/enzyme hydrogel multilayer on an Au electrode in a layer-by-layer process. Biosensors and Bioelectronics, 2012, 34, 191-196.	5.3	29
236	Poly(2-methacryloyloxyethyl phosphorylcholine) grafting and vitamin E blending for high wear resistance and oxidative stability of orthopedic bearings. Biomaterials, 2014, 35, 6677-6686.	5.7	29
237	Photoreactive Initiator for Surface-Initiated ATRP on Versatile Polymeric Substrates. ACS Applied Materials & amp; Interfaces, 2016, 8, 24994-24998.	4.0	29
238	A surface graft polymerization process on chemically stable medical ePTFE for suppressing platelet adhesion and activation. Biomaterials Science, 2018, 6, 1908-1915.	2.6	29
239	Ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane. Sensors and Actuators B: Chemical, 1993, 13, 319-322.	4.0	28
240	Molecular recognition of alcohol by volume phase transition of cross-linked poly(2-methacryloyloxyethyl phosphorylcholine) gel. Science and Technology of Advanced Materials, 2003, 4, 93-98.	2.8	28
241	Spontaneously forming hydrogel from water-soluble random- and block-type phospholipid polymers. Biomaterials, 2005, 26, 6853-6862.	5.7	28
242	Selective targeting by preS1 domain of hepatitis B surface antigen conjugated with phosphorylcholineâ€based amphiphilic block copolymer micelles as a biocompatible, drug delivery carrier for treatment of human hepatocellular carcinoma with paclitaxel. International Journal of Cancer, 2009, 124, 2460-2467.	2.3	28
243	Poly(vinylferrocene-co-2-hydroxyethyl methacrylate) mediator as immobilized enzyme membrane for the fabrication of amperometric glucose sensor. Sensors and Actuators B: Chemical, 2009, 136, 122-127.	4.0	28
244	Clinical and radiographic outcomes of total hip replacement with poly(2-methacryloyloxyethyl) Tj ETQq0 0 0 rgB prospective consecutive series. Modern Rheumatology, 2015, 25, 286-291.	T /Overloc 0.9	k 10 Tf 50 38 28
245	Water-soluble and amphiphilic phospholipid copolymers having 2-methacryloyloxyethyl phosphorylcholine units for the solubilization of bioactive compounds. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 844-862.	1.9	28
246	Spontaneously and reversibly forming phospholipid polymer hydrogels as a matrix for cell engineering. Biomaterials, 2020, 230, 119628.	5.7	28
247	Examination of hydroxyapatite filled 4-META/MMA-TBB adhesive bone cement inin vitro andin vivo environment. , 1997, 38, 11-16.		27
248	Cell adhesion control on photoreactive phospholipid polymer surfaces. Colloids and Surfaces B: Biointerfaces, 2012, 99, 1-6.	2.5	27
249	Direct observation of selective protein capturing on molecular imprinting substrates. Biosensors and Bioelectronics, 2013, 40, 96-101.	5.3	27
250	Regulation of the Cyanobacterial Circadian Clock by Electrochemically Controlled Extracellular Electron Transfer. Angewandte Chemie - International Edition, 2014, 53, 2208-2211.	7.2	27
251	Cell-Membrane-Permeable and Cytocompatible Phospholipid Polymer Nanoprobes Conjugated with Molecular Beacons. Biomacromolecules, 2014, 15, 150-157.	2.6	27
252	Translocation Mechanisms of Cell-Penetrating Polymers Identified by Induced Proton Dynamics. Langmuir, 2019, 35, 8167-8173.	1.6	27

#	Article	IF	CITATIONS
253	Validation of an MPC Polymer Coating to Attenuate Surfaceâ€Induced Crosstalk between the Complement and Coagulation Systems in Whole Blood in In Vitro and In Vivo Models. Macromolecular Bioscience, 2019, 19, e1800485.	2.1	27
254	The biological performance of cell-containing phospholipid polymer hydrogels in bulk and microscale form. Biomaterials, 2010, 31, 8839-8846.	5.7	26
255	Release of Potassium Ion and Calcium Ion from Phosphorylcholine Group Bearing Hydrogels. Polymers, 2013, 5, 1241-1257.	2.0	26
256	Formation of Polyion Complex (PIC) Micelles and Vesicles with Anionic pH-Responsive Unimer Micelles and Cationic Diblock Copolymers in Water. Langmuir, 2016, 32, 3945-3953.	1.6	26
257	Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111539.	2.5	26
258	Why do phospholipid polymers reduce protein adsorption?. Journal of Biomedical Materials Research Part B, 1998, 39, 323-330.	3.0	26
259	Behavior of blood cells in contact with water-soluble phospholipid polymer. , 1999, 46, 360-367.		25
260	Cytocompatible biointerface on poly(lactic acid) by enrichment with phosphorylcholine groups for cell engineering. Materials Science and Engineering C, 2007, 27, 227-231.	3.8	25
261	Molecularâ€Integrated Phospholipid Polymer Nanoparticles with Highly Biofunctionality. Macromolecular Symposia, 2009, 279, 125-131.	0.4	25
262	Electrospun phospholipid polymer substrate for enhanced performance in immunoassay system. Biosensors and Bioelectronics, 2012, 38, 209-214.	5.3	25
263	Linear and hyperbranched phosphorylcholine based homopolymers for blood biocompatibility. Polymer Chemistry, 2013, 4, 3140.	1.9	25
264	Photoinduced atom transfer radical polymerization in a polar solvent to synthesize a water-soluble poly(2-methacryloyloxyethyl phosphorylcholine) and its block-type copolymers. Polymer, 2015, 61, 55-60.	1.8	25
265	Photocontrolled adsorption chromatography for lysozyme using azoaromatic polymer. Journal of Applied Polymer Science, 1982, 27, 1897-1902.	1.3	24
266	Poly[4-bis(trimethylsilyl)methylstyrene] for an oxygen-permeable membrane. Die Makromolekulare Chemie Rapid Communications, 1989, 10, 255-258.	1.1	24
267	Biocompatible elastomers composed of segmented polyurethane and 2-methacryloyloxyethyl phosphorylcholine polymer. Polymers for Advanced Technologies, 2000, 11, 626-634.	1.6	24
268	Cell Engineering Biointerface Focusing on Cytocompatibility Using Phospholipid Polymer with an Isomeric Oligo(lactic acid) Segment. Biomacromolecules, 2005, 6, 1797-1802.	2.6	24
269	Dual mode bioreactions on polymer nanoparticles covered with phosphorylcholine group. Colloids and Surfaces B: Biointerfaces, 2006, 50, 55-60.	2.5	24
270	Preparation of molecular dispersed polymer blend composed of polyethylene and poly(vinyl acetate) by in situ polymerization of vinyl acetate using supercritical carbon dioxide. Polymer, 2007, 48, 1573-1580.	1.8	24

#	Article	IF	CITATIONS
271	Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip. ACS Applied Materials & Interfaces, 2015, 7, 23089-23097.	4.0	24
272	Clinical safety and wear resistance of the phospholipid polymer-grafted highly cross-linked polyethylene liner. Journal of Orthopaedic Research, 2017, 35, 2007-2016.	1.2	24
273	Initial Cell Adhesion onto a Phospholipid Polymer Brush Surface Modified with a Terminal Cell Adhesion Peptide. ACS Applied Materials & Interfaces, 2018, 10, 15250-15257.	4.0	24
274	Preparation of photoresponsive polymeric adsorbent containing amphiphilic polymer with azobenzene moiety and its application for cell adhesion chromatography. Journal of Applied Polymer Science, 1983, 28, 1321-1329.	1.3	23
275	Specific interaction between water-soluble phospholipid polymer and liposome. Journal of Polymer Science Part A, 1991, 29, 831-835.	2.5	23
276	Conformational recovery and preservation of protein nature from heat-induced denaturation by water-soluble phospholipid polymer conjugation. Biomaterials, 2009, 30, 4859-4867.	5.7	23
277	Multidirectional Wear and Impact-to-wear Tests of Phospholipid-polymer-grafted and Vitamin E-blended Crosslinked Polyethylene: A Pilot Study. Clinical Orthopaedics and Related Research, 2015, 473, 942-951.	0.7	23
278	Concentration-dependent effects of fibronectin adsorbed on hydroxyapatite surfaces on osteoblast adhesion. Materials Science and Engineering C, 2015, 48, 378-383.	3.8	23
279	Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures. Colloids and Surfaces B: Biointerfaces, 2017, 158, 249-256.	2.5	23
280	Polyion Complex Vesicles with Solvated Phosphobetaine Shells Formed from Oppositely Charged Diblock Copolymers. Polymers, 2017, 9, 49.	2.0	23
281	Promotion of cell membrane fusion by cell-cell attachment through cell surface modification with functional peptide-PEG-lipids. Biomaterials, 2020, 253, 120113.	5.7	23
282	Permselectivity of Liquid–Polymer Hybrid Membrane Composed of Carbon Tetrachloride and 2-Hydroxyethyl Acrylate– Acrylonitrile Graft Copolymer for Ethanol–Water Mixture. Polymer Journal, 1983, 15, 827-834.	1.3	22
283	Competitive adsorption between phospholipid and plasma protein on a phospholipid polymer surface. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 513-529.	1.9	22
284	pH-modulated release of insulin entrapped in a spontaneously formed hydrogel system composed of two water-soluble phospholipid polymers. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 1259-1269.	1.9	22
285	Hybridization of poly(2-methacryloyloxyethyl phosphorylcholine-block-2-ethylhexyl methacrylate) with segmented polyurethane for reducing thrombogenicity. Colloids and Surfaces B: Biointerfaces, 2013, 108, 239-245.	2.5	22
286	Effect of UVâ€irradiation intensity on graft polymerization of 2â€methacryloyloxyethyl phosphorylcholine on orthopedic bearing substrate. Journal of Biomedical Materials Research - Part A, 2014, 102, 3012-3023.	2.1	22
287	Wear resistance of the biocompatible phospholipid polymer-grafted highly cross-linked polyethylene liner against larger femoral head. Journal of Orthopaedic Research, 2015, 33, 1103-1110.	1.2	22
288	Precise control of surface electrostatic forces on polymer brush layers with opposite charges for resistance to protein adsorption. Biomaterials, 2016, 105, 102-108.	5.7	22

#	Article	IF	CITATIONS
289	High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives. Acta Biomaterialia, 2016, 40, 38-45.	4.1	22
290	Inhibition of denture plaque deposition on complete dentures by 2-methacryloyloxyethyl phosphorylcholine polymer coating: A clinical study. Journal of Prosthetic Dentistry, 2018, 119, 67-74.	1.1	22
291	Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111205.	2.5	22
292	Photoinduced permeation control of proteins using amphiphilic azoaromatic polymer membrane. Journal of Polymer Science, Polymer Letters Edition, 1984, 22, 515-518.	0.4	21
293	Smart controlled preparation of multilayered hydrogel for releasing bioactive molecules. Current Applied Physics, 2009, 9, e259-e262.	1.1	21
294	Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection. Physical Chemistry Chemical Physics, 2015, 17, 9951-9958.	1.3	21
295	Shortâ€ŧerm evaluation of thromboresistance of a poly(ether ether ketone) (PEEK) mechanical heart valve with poly(2â€methacryloyloxyethyl phosphorylcholine) (PMPC)â€grafted surface in a porcine aortic valve replacement model. Journal of Biomedical Materials Research - Part A, 2019, 107, 1052-1063.	2.1	21
296	Complex formation of amphiphilic polymers with azo dyes and their photoviscosity behavior. Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20, 1907-1916.	0.8	20
297	Biocompatible needle-type glucose sensor with potential for use in vivo. Electroanalysis, 1993, 5, 269-276.	1.5	20
298	Biodegradable Phosphorylcholine Polymer Hydrogels Cross-Linked with Vinyl-Functionalized Polyphosphate. Macromolecular Bioscience, 2003, 3, 238-242.	2.1	20
299	Platelet adhesion-resistance of titanium substrate with mussel-inspired adhesive polymer bearing phosphorylcholine group. Applied Surface Science, 2012, 258, 5418-5423.	3.1	20
300	A simple procedure for the preparation of precise spatial multicellular phospholipid polymer hydrogels. Colloids and Surfaces B: Biointerfaces, 2013, 108, 345-351.	2.5	20
301	Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1514-1529.	1.9	20
302	Bio-inspired immobilization of low-fouling phospholipid polymers <i>via</i> a simple dipping process: a comparative study of phenol, catechol and gallol as tethering groups. Polymer Chemistry, 2020, 11, 249-253.	1.9	20
303	Hemocompatible Cellulose Dialysis Membranes Modified with Phospholipid Polymers. Artificial Organs, 1995, 19, 1215-1221.	1.0	19
304	In vivo evaluation of the bond strength of adhesive 4-META/MMA-TBB bone cement under weight-bearing conditions. Journal of Biomedical Materials Research Part B, 2000, 52, 128-134.	3.0	19
305	Enzymatic photochemical sensing using luciferase-immobilized polymer nanoparticles covered with artificial cell membrane. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 1347-1357.	1.9	19
306	Stabilization of phospholipid polymer surface with three-dimensional nanometer-scaled structure for highly sensitive immunoassay. Colloids and Surfaces B: Biointerfaces, 2010, 77, 263-269.	2.5	19

#	Article	IF	CITATIONS
307	Photodynamic Therapy Using an Anti-EGF Receptor Antibody Complexed with Verteporfin Nanoparticles: A Proof of Concept Study. Cancer Biotherapy and Radiopharmaceuticals, 2011, 26, 697-704.	0.7	19
308	In situ surface modification on dental composite resin using 2-methacryloyloxyethyl phosphorylcholine polymer for controlling plaque formation. Materials Science and Engineering C, 2019, 104, 109916.	3.8	19
309	Protein adsorption resistible membrane for biosensor composed of polymer with phospholipid polar group. Journal of Polymer Science Part A, 1992, 30, 929-932.	2.5	18
310	Assessment of adsorption of liposomes on a phospholipid polymer surface using a quartz crystal microbalance. Macromolecular Rapid Communications, 1994, 15, 319-326.	2.0	18
311	A Water-Soluble Phospholipid Polymer as a New Biocompatible Synthetic DNA Carrier. Bulletin of the Chemical Society of Japan, 2004, 77, 2283-2288.	2.0	18
312	Network structure of spontaneously forming physically cross-link hydrogel composed of two-water soluble phospholipid polymers. Polymer, 2005, 46, 4704-4713.	1.8	18
313	Molecular design of reactive amphiphilic phospholipid polymer for bioconjugation with an enzyme. Journal of Applied Polymer Science, 2005, 95, 615-622.	1.3	18
314	The helical flow pump with a hydrodynamic levitation impeller. Journal of Artificial Organs, 2012, 15, 331-340.	0.4	18
315	Effects of molecular architecture of phospholipid polymers on surface modification of segmented polyurethanes. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 474-486.	1.9	18
316	CHAPTER 5. 2-Methacryloyloxyethyl Phosphorylcholine Polymers. RSC Polymer Chemistry Series, 2014, , 68-96.	0.1	18
317	Label-Free Separation of Induced Pluripotent Stem Cells with Anti-SSEA-1 Antibody Immobilized Microfluidic Channel. Langmuir, 2017, 33, 1576-1582.	1.6	18
318	Wear resistance of poly(2â€methacryloyloxyethyl phosphorylcholine)â€grafted carbon fiber reinforced poly(ether ether ketone) liners against metal and ceramic femoral heads. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1028-1037.	1.6	18
319	Phospholipid-mimicking cell-penetrating polymers: principles and applications. Journal of Materials Chemistry B, 2020, 8, 7633-7641.	2.9	18
320	Separation of proteins by polymeric adsorbents containing azobenzene moiety as a ligand. Journal of Applied Polymer Science, 1982, 27, 4273-4282.	1.3	17
321	Nonthrombogenic polymers ―designs and evaluation. Macromolecular Symposia, 1996, 101, 405-412.	0.4	17
322	Domain-controlled polymer alloy composed of segmented polyurethane and phospholipid polymer for biomedical applications. Science and Technology of Advanced Materials, 2003, 4, 523-530.	2.8	17
323	Highly stabilized papain conjugated with water-soluble phospholipid polymer chain having a reacting terminal group. Journal of Applied Polymer Science, 2004, 91, 827-832.	1.3	17
324	Synthesis and Properties of Segmented Poly(urethane-urea)s Containing Phosphorylcholine Moiety in the Side-Chain. Polymer Journal, 2008, 40, 1149-1156.	1.3	17

#	Article	IF	CITATIONS
325	Controllable Nanostructured Surface Modification on Quantum Dot for Biomedical Application in Aqueous Medium. Journal of Nanoscience and Nanotechnology, 2009, 9, 358-365.	0.9	17
326	Effect of hydrophilic polymer conjugation on heat-induced conformational changes in a protein. Acta Biomaterialia, 2011, 7, 1477-1484.	4.1	17
327	Biomimetic hydrogels gate transport of calcium ions across cell culture inserts. Biomedical Microdevices, 2012, 14, 549-558.	1.4	17
328	Detachment of cells adhered on the photoreactive phospholipid polymer surface by photoirradiation and their functionality. Colloids and Surfaces B: Biointerfaces, 2013, 103, 489-495.	2.5	17
329	Detection of microtubules in vivo using antibody-immobilized nanoneedles. Journal of Bioscience and Bioengineering, 2014, 117, 107-112.	1.1	17
330	Reducing frettingâ€initiated crevice corrosion in hip simulator tests using a zirconiaâ€toughened alumina femoral head. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2815-2826.	1.6	17
331	Preparation and permeability of urea-responsive polymer membrane consisting of immobilized urease and poly(aromatic carboxylic acid). Journal of Polymer Science, Polymer Letters Edition, 1985, 23, 531-535.	0.4	16
332	pH-induced reversible permeability control of the 4-carboxy acrylanilide-methyl methacrylate copolymer membrane. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23, 2841-2850.	0.8	16
333	Stabilized liposomes with phospholipid polymers and their interactions with blood cells. Colloids and Surfaces B: Biointerfaces, 2002, 25, 325-333.	2.5	16
334	Development of Gene Vectors for Pinpoint Targeting to Human Hepatocytes by Cationically Modified Polymer Complexes. European Surgical Research, 2007, 39, 23-34.	0.6	16
335	Preparations of Aromatic Diamine Monomers and Copolyamides Containing Phosphorylcholine Moiety and the Biocompatibility of Copolyamides. Polymer Journal, 2007, 39, 712-721.	1.3	16
336	Simple surface treatment using amphiphilic phospholipid polymers to obtain wetting and lubricity on polydimethylsiloxane-based substrates. Colloids and Surfaces B: Biointerfaces, 2012, 97, 70-76.	2.5	16
337	Quantitating distance-dependent, indirect cell–cell interactions with a multilayered phospholipid polymer hydrogel. Biomaterials, 2014, 35, 2181-2187.	5.7	16
338	Photoinduced Surface Zwitterionization for Antifouling of Porous Polymer Substrates. Langmuir, 2019, 35, 1312-1319.	1.6	16
339	Redoxâ€Active Polymers Connecting Living Microbial Cells to an Extracellular Electrical Circuit. Small, 2020, 16, e2001849.	5.2	16
340	Comprehensive Genetic Analysis of Early Host Body Reactions to the Bioactive and Bio-Inert Porous Scaffolds. PLoS ONE, 2014, 9, e85132.	1.1	16
341	Novel organosilicon-containing polymers for an oxygen permselective membrane. Die Makromolekulare Chemie, 1990, 191, 2103-2110.	1.1	15
342	Instantaneous Determination via Bimolecular Recognition: Usefulness of FRET in Phosphorylcholine Group Enriched Nanoparticles. Bioconjugate Chemistry, 2007, 18, 1811-1817.	1.8	15

#	Article	IF	CITATIONS
343	Synthesis of polyurethanes by polyaddition using diol compounds with methacrylate-derived functional groups. Polymer, 2011, 52, 5445-5451.	1.8	15
344	Redox phospholipid polymer microparticles as doubly functional polymer support for immobilization of enzyme oxidase. Colloids and Surfaces B: Biointerfaces, 2013, 102, 857-863.	2.5	15
345	Mobility of the Arg-Gly-Asp ligand on the outermost surface of biomaterials suppresses integrin-mediated mechanotransduction and subsequent cell functions. Acta Biomaterialia, 2015, 13, 42-51.	4.1	15
346	Preventive effects of a phospholipid polymer coating on PMMA on biofilm formation by oral streptococci. Applied Surface Science, 2016, 390, 602-607.	3.1	15
347	A hydrated phospholipid polymer-grafted layer prevents lipid-related oxidative degradation of cross-linked polyethylene. Biomaterials, 2017, 112, 122-132.	5.7	15
348	pH-Responsive Polyion Complex Vesicle with Polyphosphobetaine Shells. Langmuir, 2019, 35, 1249-1256.	1.6	15
349	2-Methacryloyloxyethyl Phosphorylcholine Polymer Coating Inhibits Bacterial Adhesion and Biofilm Formation on a Suture: An In Vitro and In Vivo Study. BioMed Research International, 2020, 2020, 1-8.	0.9	15
350	Zwitterionized Nanofibrous Poly(vinylidene fluoride) Membranes for Improving the Healing of Diabetic Wounds. ACS Biomaterials Science and Engineering, 2021, 7, 562-576.	2.6	15
351	Thermal property and processability of elastomeric polymer alloy composed of segmented polyurethane and phospholipid polymer. Journal of Biomedical Materials Research Part B, 2002, 62, 214-221.	3.0	14
352	Thermo-responsive behavior of hybrid core cross-linked polymer micelles with biocompatible shells. Polymer, 2011, 52, 2810-2818.	1.8	14
353	Polymer coating glass to improve the protein antifouling effect. Polymer Journal, 2018, 50, 381-388.	1.3	14
354	Synthesis and Properties of Upper Critical Solution Temperature Responsive Nanogels. Langmuir, 2019, 35, 7261-7267.	1.6	14
355	Potential of Cell Surface Engineering with Biocompatible Polymers for Biomedical Applications. Langmuir, 2020, 36, 12088-12106.	1.6	14
356	Nanoscaled Morphology and Mechanical Properties of a Biomimetic Polymer Surface on a Silicone Hydrogel Contact Lens. Langmuir, 2021, 37, 13961-13967.	1.6	14
357	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1981, 2, 617-620.	1.1	13
358	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1990, 11, 345-348.	1.1	13
359	Biocompatibility of MPC: in vivo evaluation for clinical application. Journal of Artificial Organs, 2000, 3, 39-46.	0.4	13
360	Surface characteristics of block-type copolymer composed of semi-fluorinated and phospholipid segments synthesized by living radical polymerization. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 1153-1166.	1.9	13

#	Article	IF	CITATIONS
361	Phosphorylcholine Group-immobilized Surface Prepared on Polydimethylsiloxane Membrane by In Situ Reaction for Its Reduced Biofouling. Nanobiotechnology, 2007, 3, 83-88.	1.2	13
362	Protein adsorption resistant surface on polymer composite based on 2D- and 3D-controlled grafting of phospholipid moieties. Applied Surface Science, 2008, 255, 379-383.	3.1	13
363	Bioabsorbable Material–Containing Phosphorylcholine Group-Rich Surfaces for Temporary Scaffolding of the Vessel Wall. Tissue Engineering - Part C: Methods, 2009, 15, 125-133.	1.1	13
364	Preparation of nano-structured titanium oxide film for biosensor substrate by wet corrosion process. Current Applied Physics, 2009, 9, e266-e269.	1.1	13
365	Gene chip/PCR-array analysis of tissue response to 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer surfaces in a mouse subcutaneous transplantation system. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1658-1672.	1.9	13
366	Fabrication of a live cell-containing multilayered polymer hydrogel membrane with micrometer-scale thickness to evaluate pharmaceutical activity. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1372-1385.	1.9	13
367	Therapeutic effect of intravesical administration of paclitaxel solubilized with poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) in an orthotopic bladder cancer model. BMC Cancer, 2015, 15, 317.	1.1	13
368	Modification of human MSC surface with oligopeptideâ€PEGâ€lipids for selective binding to activated endothelium. Journal of Biomedical Materials Research - Part A, 2019, 107, 1779-1792.	2.1	13
369	Regulation of binding and releasing of cephalosporins by photoresponsive polymeric adsorbent. Die Makromolekulare Chemie Rapid Communications, 1981, 2, 95-98.	1.1	12
370	Enhanced strength in cemented stem fixation using adhesive acrylic cement as a metal coating material. , 1997, 34, 171-175.		12
371	Nanoneedle Surface Modification with 2-Methacryloyloxyethyl Phosphorylcholine Polymer to Reduce Nonspecific Protein Adsorption in a Living Cell. Nanobiotechnology, 2007, 3, 127-134.	1.2	12
372	Single step diagnosis system using the FRET phenomenon induced by antibody-immobilized phosphorylcholine group-covered polymer nanoparticles. Sensors and Actuators B: Chemical, 2008, 129, 87-93.	4.0	12
373	Polymer composite biomaterials from polyethylene/poly(vinyl acetate) prepared in supercritical carbon dioxide and their bulk and surface characterization. Journal of Supercritical Fluids, 2008, 44, 391-399.	1.6	12
374	In Vivo Evaluation of the "TinyPump―as a Pediatric Left Ventricular Assist Device. Artificial Organs, 2011, 35, 543-553.	1.0	12
375	Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1461-1478.	1.9	12
376	Phospholipid polymer-based antibody immobilization for cell rolling surfaces in stem cell purification system. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1590-1601.	1.9	12
377	Animal Experiments of the Helical Flow Total Artificial Heart. Artificial Organs, 2015, 39, 670-680.	1.0	12
378	Toward Antibiofouling PVDF Membranes. Langmuir, 2019, 35, 6782-6792.	1.6	12

#	Article	IF	CITATIONS
379	Facilitated Disassembly of Polyplexes Composed of Self-assembling Amphiphilic Polycations Enhances the Gene Transfer Efficacy. Chemistry Letters, 2005, 34, 1478-1479.	0.7	11
380	Phospholipid polymer hydrogel formed by the photodimerization of cinnamoyl groups in the polymer side chain. Journal of Applied Polymer Science, 2007, 104, 44-50.	1.3	11
381	Antithrombogenic Properties of a Monopivot Magnetic Suspension Centrifugal Pump for Circulatory Assist. Artificial Organs, 2008, 32, 484-489.	1.0	11
382	Thermo-Responsive and Biocompatible Diblock Copolymers Prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) Radical Polymerization. Polymers, 2014, 6, 846-859.	2.0	11
383	Grafting of poly(2-methacryloyloxyethyl phosphorylcholine) on polyethylene liner in artificial hip joints reduces production of wear particles. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 31, 100-106.	1.5	11
384	Safety, reliability, and operability of cochlear implant electrode arrays coated with biocompatible polymer. Acta Oto-Laryngologica, 2015, 135, 320-327.	0.3	11
385	Poly(dimethylsiloxane) (PDMS) surface patterning by biocompatible photo-crosslinking block copolymers. RSC Advances, 2015, 5, 46686-46693.	1.7	11
386	Photoinduced inhibition of DNA unwinding in vitro with water-soluble polymers containing both phosphorylcholine and photoreactive groups. Acta Biomaterialia, 2016, 40, 226-234.	4.1	11
387	Self-Association Behavior of Cell Membrane-Inspired Amphiphilic Random Copolymers in Water. Polymers, 2019, 11, 327.	2.0	11
388	Adsorption of photochromic azo dye onto styrene-divinylbenzene copolymer. Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 593-597.	0.4	10
389	Photoregulated binding ability of azoaromatic polymer for surfactant. Journal of Polymer Science: Polymer Chemistry Edition, 1981, 19, 3039-3046.	0.8	10
390	Preparation of polymer membranes with responsive function for amino compounds. Polymer Bulletin, 1982, 7, 457-463.	1.7	10
391	Multifunctional biocompatible membrane and its application to fabricate a miniaturized glucose sensor with potential for use in vivo. Biomedical Microdevices, 1999, 1, 155-166.	1.4	10
392	Total hip arthroplasty using bone cement containing tri-n-butylborane as the initiator. , 1999, 48, 759-763.		10
393	Multiple Protein-immobilized Phospholipid Polymer Nanoparticles: Effect of Spacer Length on Residual Enzymatic Activity and Molecular Diagnosis. Nanobiotechnology, 2007, 3, 76-82.	1.2	10
394	Relaxation modes in chemically cross-linked poly(2-methacryloyloxyethyl phosphorylcholine) hydrogels. Soft Matter, 2013, 9, 2166.	1.2	10
395	A large mobility of hydrophilic molecules at the outmost layer controls the protein adsorption and adhering behavior with the actin fiber orientation of human umbilical vein endothelial cells (HUVEC). Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1320-1332.	1.9	10
396	Influences of dehydration and rehydration on the lubrication properties of phospholipid polymer-grafted cross-linked polyethylene. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2015, 229, 506-514.	1.0	10

#	Article	IF	CITATIONS
397	Movement of a Quantum Dot Covered with Cytocompatible and pH-Responsible Phospholipid Polymer Chains under a Cellular Environment. Biomacromolecules, 2016, 17, 3986-3994.	2.6	10
398	Water-soluble complex formation of fullerenes with a biocompatible polymer. Polymer Journal, 2016, 48, 999-1005.	1.3	10
399	Antibacterial effect of nanometerâ€size grafted layer of quaternary ammonium polymer on poly(ether) Tj ETQq1	1 0.78431 1.3	4 rgBT /Over
400	Impact of REDV peptide density and its linker structure on the capture, movement, and adhesion of flowing endothelial progenitor cells in microfluidic devices. Materials Science and Engineering C, 2021, 129, 112381.	3.8	10
401	Synthesis of poly(2-methacryloyloxyethyl phosphorylcholine)-conjugated lipids and their characterization and surface properties of modified liposomes for protein interactions. Biomaterials Science, 2021, 9, 5854-5867.	2.6	10
402	Smart PEEK Modified by Self-Initiated Surface Graft Polymerization for Orthopedic Bearings. Reconstructive Review, 2014, 4, 36-45.	0.1	10
403	Photoinduced reversible pH change in aqueous solution of azoaromatic poly(carboxylic acid). Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 3687-3695.	0.8	9
404	New Biocompatible Polymer. ACS Symposium Series, 1994, , 194-210.	0.5	9
405	Synthesis of novel phospholipid polymers by polycondensation. Macromolecular Rapid Communications, 2000, 21, 287-290.	2.0	9
406	Prevention of fibrous layer formation between bone and adhesive bone cement:In vivo evaluation of bone impregnation with 4-META/MMA-TBB cement. Journal of Biomedical Materials Research Part B, 2000, 52, 24-29.	3.0	9
407	Importance of a biofouling-resistant phospholipid polymer to create a heparinized blood-compatible surface. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 323-335.	1.9	9
408	Photo-induced Functionalization on Biomaterials Surfaces. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 161-166.	0.1	9
409	Spontaneous Formation of a Hydrogel Composed of Water-Soluble Phospholipid Polymers Grafted with Enantiomeric Oligo(lactic acid) Chains. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 77-89.	1.9	9
410	Surface patterned graft copolymerization of hydrophilic monomers onto hydrophobic polymer film upon UV irradiation. Journal of Polymer Science Part A, 2014, 52, 2822-2829.	2.5	9
411	Surface Modification on Poly(ether ether ketone) with Phospholipid Polymer via Photoinduced Selfâ€Initiated Grafting. Macromolecular Symposia, 2015, 354, 230-236.	0.4	9
412	Preparation of Giant Polyion Complex Vesicles (G-PICsomes) with Polyphosphobetaine Shells Composed of Oppositely Charged Diblock Copolymers. Chemistry Letters, 2017, 46, 824-827.	0.7	9
413	A Polymethyl Methacrylate–Based Acrylic Dental Resin Surface Bound with a Photoreactive Polymer Inhibits Accumulation of Bacterial Plaque. International Journal of Prosthodontics, 2017, 30, 533-540.	0.7	9
414	Effect of liposome surface modification with water-soluble phospholipid polymer chain-conjugated lipids on interaction with human plasma proteins. Journal of Materials Chemistry B, 2022, 10, 2512-2522.	2.9	9

#	Article	IF	CITATIONS
415	Biodegradable polymer films for releasing nanovehicles containing sirolimus. Drug Delivery, 2009, 16, 183-188.	2.5	8
416	Direct electron transfer with enzymes on nanofiliform titanium oxide films with electron-transport ability. Biosensors and Bioelectronics, 2013, 41, 289-293.	5.3	8
417	Preparation of amphiphilic diblock copolymers with pendant hydrophilic phosphorylcholine and hydrophobic dendron groups and their self-association behavior in water. Journal of Polymer Science Part A, 2013, 51, 4923-4931.	2.5	8
418	Cytocompatible and spontaneously forming phospholipid polymer hydrogels. European Polymer Journal, 2015, 72, 577-589.	2.6	8
419	A phospholipid polymer graft layer affords high resistance for wear and oxidation under load bearing conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79, 203-212.	1.5	8
420	Hydrated Phospholipid Polymer Gel-Like Layer for Increased Durability of Orthopedic Bearing Surfaces. Langmuir, 2019, 35, 1954-1963.	1.6	8
421	Hybridization of a phospholipid polymer hydrogel with a natural extracellular matrix using active cell immobilization. Biomaterials Science, 2019, 7, 2793-2802.	2.6	8
422	Determination of association constants between water-soluble phospholipid polymer bearing phenylboronic acid group and polyol compounds for reversible formation of three-dimensional networks. Reactive and Functional Polymers, 2019, 135, 113-120.	2.0	8
423	Photoinduced self-initiated graft polymerization of methacrylate monomers on poly(ether ether) Tj ETQq1 1 0.78 731-741.	4314 rgB 1.3	Г /Overlock 8
424	Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. Journal of Materials Chemistry B, 2022, 10, 3397-3419.	2.9	8
425	Biocompatible Microdialysis Hollow-Fiber Probes for Long-Term In Vivo Glucose Monitoring. ACS Symposium Series, 1998, , 24-33.	0.5	7
426	Tissue-compatible and adhesive polyion complex hydrogels composed of amphiphilic phospholipid polymers. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 623-640.	1.9	7
427	Synthesis of Amphiphilic Copolymers by Soap-free Interface-Mediated Polymerization. Polymer Journal, 2009, 41, 370-373.	1.3	7
428	Cytocompatible Hydrogel Composed of Phospholipid Polymers for Regulation of Cell Functions. Advances in Polymer Science, 2011, , 141-165.	0.4	7
429	The Noninvasive Treatment for Sentinel Lymph Node Metastasis by Photodynamic Therapy Using Phospholipid Polymer as a Nanotransporter of Verteporfin. BioMed Research International, 2017, 2017, 1-7.	0.9	7
430	Reliable surface modification of dental plastic substrates to reduce biofouling with a photoreactive phospholipid polymer. Journal of Applied Polymer Science, 2018, 135, 46512.	1.3	7
431	Synthesis of Amphiphilic Statistical Copolymers Bearing Methoxyethyl and Phosphorylcholine Groups and Their Self-Association Behavior in Water. Polymers, 2020, 12, 1808.	2.0	7
432	Biomimetic phospholipid polymers for suppressing adsorption of saliva proteins on dental hydroxyapatite substrate. Journal of Applied Polymer Science, 2021, 138, 49812.	1.3	7

#	Article	IF	CITATIONS
433	Cell Surface Functionalization with Heparinâ€Conjugated Lipid to Suppress Blood Activation. Advanced Functional Materials, 2021, 31, 2008167.	7.8	7
434	Water-soluble polymer micelles formed from amphiphilic diblock copolymers bearing pendant phosphorylcholine and methoxyethyl groups. Polymer Journal, 2021, 53, 805-814.	1.3	7
435	Anticancer Activity of Cell-Penetrating Redox Phospholipid Polymers. ACS Macro Letters, 2021, 10, 926-932.	2.3	7
436	A Bioconjugated Phospholipid Polymer Biointerface with Nanometer-Scaled Structure for Highly Sensitive Immunoassays. Methods in Molecular Biology, 2011, 751, 491-502.	0.4	7
437	Preparation and Visible Light Polymerization of Triethyleneglycol Acrylate Methacrylate Polymer Journal, 1992, 24, 357-363.	1.3	6
438	Preparation of photoreactive phospholipid polymer nanoparticles to immobilize and release protein by photoirradiation. Colloids and Surfaces B: Biointerfaces, 2015, 135, 365-370.	2.5	6
439	Building cell-containing multilayered phospholipid polymer hydrogels for controlling the diffusion of a bioactive reagent. RSC Advances, 2015, 5, 44408-44415.	1.7	6
440	Surface functionalization of quantum dots with fine-structured pH-sensitive phospholipid polymer chains. Colloids and Surfaces B: Biointerfaces, 2015, 135, 490-496.	2.5	6
441	ATP-mediated Release of a DNA-binding Protein from a Silicon Nanoneedle Array. Electrochemistry, 2016, 84, 305-307.	0.6	6
442	Complexes Covered with Phosphorylcholine Groups Prepared by Mixing Anionic Diblock Copolymers and Cationic Surfactants. Langmuir, 2017, 33, 5236-5244.	1.6	6
443	Molecular integration on phospholipid polymer-coated magnetic beads for gene expression analysis in cells. Reactive and Functional Polymers, 2017, 119, 125-133.	2.0	6
444	Cell-Membrane Permeable Redox Phospholipid Polymers Induce Apoptosis in MDA-MB-231 Human Breast Cancer Cells. Biomacromolecules, 2019, 20, 4447-4456.	2.6	6
445	Singlet oxygen generation by sonication using a water-soluble fullerene (C60) complex: a potential application for sonodynamic therapy. Polymer Journal, 2020, 52, 1387-1394.	1.3	6
446	Effects of inner polarity and viscosity of amphiphilic phospholipid polymer aggregates on the solubility enhancement of poorly water-soluble drugs. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111215.	2.5	6
447	Thermo-Responsive Behavior of Mixed Aqueous Solution of Hydrophilic Polymer with Pendant Phosphorylcholine Group and Poly(Acrylic Acid). Polymers, 2021, 13, 148.	2.0	6
448	Control of surface modification uniformity inside small-diameter polyethylene/poly(vinyl acetate) composite tubing prepared with supercritical carbon dioxide. Journal of Materials Chemistry, 2010, 20, 4897.	6.7	5
449	Physicochemical delivery of amphiphilic copolymers to specific organelles. Polymer Journal, 2011, 43, 718-722.	1.3	5
450	Quantitative evaluation of interaction force of fibrinogen at well-defined surfaces with various structures. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1629-1640.	1.9	5

#	Article	IF	CITATIONS
451	Aggregation behavior in water of amphiphilic diblock copolymers bearing biocompatible phosphorylcholine and cholesteryl groups. Polymer Journal, 2015, 47, 71-76.	1.3	5
452	Diffusion-Induced Hydrophilic Conversion of Polydimethylsiloxane/Block-Type Phospholipid Polymer Hybrid Substrate for Temporal Cell-Adhesive Surface. ACS Applied Materials & Interfaces, 2016, 8, 21839-21846.	4.0	5
453	Identification of Metal-Binding Peptides and Their Conjugation onto Nanoparticles of Superparamagnetic Iron Oxides and Liposomes. ACS Applied Materials & Interfaces, 2020, 12, 24623-24634.	4.0	5
454	Direct photoreactive immobilization of water-soluble phospholipid polymers on substrates in an aqueous environment. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111507.	2.5	5
455	Exogenous Cell Surface Modification with Cell Penetrating Peptide-Conjugated Lipids Causes Spontaneous Cell Adhesion. ACS Applied Bio Materials, 2021, 4, 4598-4606.	2.3	5
456	Induction of Spontaneous Liposome Adsorption by Exogenous Surface Modification with Cell-Penetrating Peptide-Conjugated Lipids. Langmuir, 2021, 37, 9711-9723.	1.6	5
457	Control of Cellâ€Substrate Binding Related to Cell Proliferation Cycle Status Using a Cytocompatible Phospholipid Polymer Bearing Phenylboronic Acid Groups. Macromolecular Bioscience, 2021, 21, 2000341.	2.1	5
458	Interface of Phospholipid Polymer Grafting Layers to Analyze Functions of Immobilized Oligopeptides Involved in Cell Adhesion. ACS Biomaterials Science and Engineering, 2020, 6, 3984-3993.	2.6	5
459	pH-Responsive Association Behavior of Biocompatible Random Copolymers Containing Pendent Phosphorylcholine and Fatty Acid. Langmuir, 2022, 38, 5119-5127.	1.6	5
460	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1984, 5, 459-462.	1.1	4
461	Precise Design of Surface Nano-texture and Surface Chemistry of Polymeric Solids. Composite Interfaces, 2009, 16, 519-533.	1.3	4
462	Preparation of electrospun poly(l-lactide-co-caprolactone-co-glycolide)/phospholipid polymer/rapamycin blended fibers for vascular application. Current Applied Physics, 2009, 9, e249-e251.	1.1	4
463	Essential Factors to Make Excellent Biocompatibility of Phospholipid Polymer Materials. Advances in Science and Technology, 0, , .	0.2	4
464	Effects of Surface Modification and Bulk Geometry on the Biotribological Behavior of Cross-Linked Polyethylene: Wear Testing and Finite Element Analysis. BioMed Research International, 2015, 2015, 1-10.	0.9	4
465	Effects of extra irradiation on surface and bulk properties of <scp>PMPC</scp> â€grafted crossâ€linked polyethylene. Journal of Biomedical Materials Research - Part A, 2016, 104, 37-47.	2.1	4
466	Water-Soluble and Cytocompatible Phospholipid Polymers for Molecular Complexation to Enhance Biomolecule Transportation to Cells In Vitro. Polymers, 2020, 12, 1762.	2.0	4
467	Combination of two antithrombogenic methodologies for preventing thrombus formation on a poly(ether ether ketone) substrate. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111021.	2.5	4
468	Effects of molecular architecture of photoreactive phospholipid polymer on adsorption and reaction on substrate surface under aqueous condition. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 419-437.	1.9	4

#	Article	IF	CITATIONS
469	Functional coatings for lab-on-a-chip systems based on phospholipid polymers. , 2021, , 555-595.		4
470	Adhesion of Flk1-expressing cells under shear flow in phospholipid polymer-coated immunoaffinity channels. Journal of Micromechanics and Microengineering, 2021, 31, 045012.	1.5	4
471	Preparation of Biointerface on Nanoparticles Surface by Atom Transfer Radical Polymerization. Transactions of the Materials Research Society of Japan, 2007, 32, 555-558.	0.2	4
472	Temperature effect on drug release from poly(2-methacryloyloxyethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 622	2 Td (phos 0.0	phorylcholine
473	Separated Micelles Formation of pH-Responsive Random and Block Copolymers Containing Phosphorylcholine Groups. Polymers, 2022, 14, 577.	2.0	4
474	Polymeric Lipid Nanosphere Composed of Hemocompatible Phospholipid Polymers as Drug Carrier. ACS Symposium Series, 2000, , 324-334.	0.5	3
475	Well Defined Surface Preparation with Phospholipid Polymers for Highly Sensitive Immunoassays. Key Engineering Materials, 2007, 342-343, 889-892.	0.4	3
476	The End Group Modification of Phospholipid Polymer Brush Grafted on Ferric Oxide Nanoparticles for Diagnostics. Materials Research Society Symposia Proceedings, 2008, 1093, 41101.	0.1	3
477	Bioinspired Polymer Surfaces for Nanodevices and Nanomedicine. Advances in Science and Technology, 2008, 57, 5-14.	0.2	3
478	Solubilization of quantum dot with new double functional reversible addition–fragmentation chain transfer reagents. Current Applied Physics, 2009, 9, e284-e286.	1.1	3
479	The effects of nanophase-separated amphiphilic domains on cell adhesion. Transactions of the Materials Research Society of Japan, 2011, 36, 577-580.	0.2	3
480	The helical flow total artificial heart: Implantation in goats. , 2013, 2013, 2720-3.		3
481	2-Methacryloyloxyethyl Phosphorylcholine Polymer Treatment of Complete Dentures to Inhibit Denture Plaque Deposition. Journal of Visualized Experiments, 2016, , .	0.2	3
482	Phospholipid Polymer Grafted Highly Cross-Linked UHMWPE. , 2016, , 352-368.		3
483	Water-soluble complex formation of fullerene and thermo-responsive diblock copolymer. Journal of Polymer Science Part A, 2017, 55, 2432-2439.	2.5	3
484	Introduction of functional groups to reactive ABA block-copolymers composed of poly(2-methacryloyloxyethyl phosphorylcholine) and poly(glycidyl methacrylate) for spontaneous hydrogel formation. Polymer, 2017, 123, 100-106.	1.8	3
485	Interpolymer association of amphiphilic diblock copolymers bearing pendant siloxane and phosphorylcholine groups. Journal of Polymer Science Part A, 2019, 57, 1500-1507.	2.5	3
486	Formation of stable polydopamine layer on polytetrafluoroethylene substrate by hybrid process involved plasma treatment and spontaneous chemical reactions. Materials Today Communications, 2020, 22, 100774.	0.9	3

#	Article	IF	CITATIONS
487	Phospholipid Polymer Hydrogel Matrices with Dually Immobilized Cytokines for Accelerating Secretion of the Extracellular Matrix by Encapsulated Cells. Macromolecular Bioscience, 2020, 20, 2000114.	2.1	3
488	Effects of Initially Adsorbed Proteins on Substrate Surfaces during Multilayer Heterogeneous Protein Adsorption. Langmuir, 2021, 37, 3897-3902.	1.6	3
489	Chemical Structural Effects of Amphipathic and Water-soluble Phospholipid Polymers on Formulation of Solid Dispersions. Journal of Pharmaceutical Sciences, 2021, 110, 2966-2973.	1.6	3
490	Why do phospholipid polymers reduce protein adsorption?. , 1998, 39, 323.		3
491	Enhanced and Specific Internalization of Polymeric Nanoparticles to Cells. IFMBE Proceedings, 2013, , 262-265.	0.2	3
492	Multilayered phospholipid polymer hydrogels for releasing cell growth factors. Biomaterials and Biomechanics in Bioengineering, 2014, 1, 1-12.	0.1	3
493	Encapsulation of <i>shewanella</i> in the redox phospholipid polymer hydrogel for microbial fuel cell fabrication. Transactions of the Materials Research Society of Japan, 2012, 37, 529-532.	0.2	3
494	Induction of mesenchymal stem cell differentiation by co-culturing with mature cells in double-layered 2-methacryloyloxyethyl phosphorylcholine polymer hydrogel matrices. Journal of Materials Chemistry B, 2021, , .	2.9	3
495	Photoinduced immobilization of 2-methacryloyloxyethyl phosphorylcholine polymers with different molecular architectures on a poly(ether ether ketone) surface. Journal of Materials Chemistry B, 2022, , .	2.9	3
496	Preparation of Biocompatible Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Hollow Particles Using Silica Particles as a Template. Langmuir, 2022, 38, 5812-5819.	1.6	3
497	Bioinspired Polymer Surfaces for Prevention of Bioresponse. Materials Science Forum, 2003, 426-432, 3171-3176.	0.3	2
498	Artificial Biomembrane Approach for Tissue Regeneration. Hyomen Kagaku, 2004, 25, 23-29.	0.0	2
499	Cell Self Assembly of Intracellular Interface Using Cell Migration. Materials Research Society Symposia Proceedings, 2008, 1092, 21201.	0.1	2
500	Enzyme oxidase-immobilized phospholipid polymer microparticles for biofuel cell application. Transactions of the Materials Research Society of Japan, 2011, 36, 531-534.	0.2	2
501	Biomimetic Polymer Nanoparticles Embedding Quantum Dots. Materials Research Society Symposia Proceedings, 2011, 1357, 1.	0.1	2
502	Bioinspired Phospholipid Polymer Hydrogel System for Cellular Engineering. Macromolecular Symposia, 2015, 351, 69-77.	0.4	2
503	Well-structured Graft-type Phospholipid Polymer for Modified Polyurethane Vascular Prosthesis. Transactions of the Materials Research Society of Japan, 2015, 40, 137-140.	0.2	2
504	DNA structures under molecular crowding conditions with a phosphorylcholine derivative (MPC). Transactions of the Materials Research Society of Japan, 2015, 40, 99-102.	0.2	2

#	Article	IF	CITATIONS
505	Temperature-Responsive Diblock Copolymers Bearing Biocompatible Pendant Phosphorylcholine Groups. Kobunshi Ronbunshu, 2016, 73, 192-197.	0.2	2
506	Spontaneous Hydrogel Formation Through Hydrophobic Interactions in an ABA-type Block Copolymer Composed of Poly(2-methacryloyloxyethyl phosphorylcholine) and Poly(n-butyl methacrylate) Segments. MRS Advances, 2018, 3, 1691-1696.	0.5	2
507	The effects of presence of a backside screw hole on biotribological behavior of phospholipid polymerâ€grafted crosslinked polyethylene. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 610-618.	1.6	2
508	Bioinspired functionalization of metal surfaces with polymers. , 2019, , 383-403.		2
509	Efficacy of hydrated phospholipid polymer interfaces between allâ€polymer bearings for total hip arthroplasty. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 89-102.	1.6	2
510	Stabilization of Lipid Lamellar Bilayer Structure of Stratum Corneum Modulated by Poly (2-methacryloyloxyethyl phosphorylcholine) in Relation to Skin Hydration and Skin Protection. Tissue Engineering and Regenerative Medicine, 2021, 18, 953-962.	1.6	2
511	Cytocompatible polymer hydrogels as microenvironment tunable three-dimensional cell culture matrices. Transactions of the Materials Research Society of Japan, 2012, 37, 357-360.	0.2	2
512	Nanoscale Surface Grafting with Phospholipid Polymer to Lubricate Polypropylene Surface. Transactions of the Materials Research Society of Japan, 2007, 32, 579-582.	0.2	2
513	Intravenous Administration of Dehydroxymethylepoxyquinomicin With Polymer Enhances the Inhibition of Pancreatic Carcinoma Growth in Mice. Anticancer Research, 2021, 41, 6003-6012.	0.5	2
514	Preparation of a thermo-responsive drug carrier consisting of a biocompatible triblock copolymer and fullerene. Journal of Materials Chemistry B, 2021, , .	2.9	2
515	Formation of Water-Soluble Complexes from Fullerene with Biocompatible Block Copolymers Bearing Pendant Glucose and Phosphorylcholine. Langmuir, 2022, 38, 5744-5751.	1.6	2
516	Cell-Container Prepared with Cytocom pa tibie Phospholipid Polymers for Cell and Tissue Engineering. ACS Symposium Series, 2008, , 336-345.	0.5	1
517	High-Sensitive Analysis of Oligopeptide-Induced Cell Penetration Using Phospholipid Polymer Nanoparticles Containing Quantum Dots. Transactions of the Materials Research Society of Japan, 2009, 34, 189-192.	0.2	1
518	NONBIOFOULING SURFACES COVERED BY BIO-INSPIRED 2-METHACRYLOYLOXYETHYL PHOSPHORYLCHOLINE POLYMER BRUSH BY USE OF POLYMERIC PHOTOINIFERTER. Nano LIFE, 2012, 02, 1242003.	0.6	1
519	Clarification of Protein Adsorption at Polymer Brush Surfaces Based on Water Structure Surrounding the Surface. ACS Symposium Series, 2012, , 605-620.	0.5	1
520	Phospholipid Polymer-covered Magnetic Nanoparticles for Tracking Intracellular Molecular Reaction. Transactions of the Materials Research Society of Japan, 2014, 39, 427-430.	0.2	1
521	Reactive ABAâ€Type Triblock Phospholipid Copolymer by ATRP and Its Chemical Functionalizations. Macromolecular Symposia, 2015, 354, 104-110.	0.4	1
522	Redox-active cytocompatible phospholipid polymer hydrogels for three-dimensional electrical control of encapsulated living cells. Transactions of the Materials Research Society of Japan, 2015, 40, 119-122.	0.2	1

#	Article	IF	CITATIONS
523	Hydrogels and Surface Modification. , 2015, , 299-340.		1
524	Cytocompatible Magnetic Nanoparticles with Cell-internalizing Properties for Quantification of the Intracellular Environment. Transactions of the Materials Research Society of Japan, 2016, 41, 113-116.	0.2	1
525	Direct Interaction Force and Adsorption Behavior of Fibrinogen on Well-Characterized Polymer Brush Surfaces. Transactions of the Materials Research Society of Japan, 2016, 41, 51-54.	0.2	1
526	Effects of Material Thickness and Surface Modification of Cross-linked Polyethylene with Poly(2-Methacryloyloxyethyl Phosphorylcholine) on Its Deformation Behavior, Wear Resistance, and Durability Under Repetitive Impact-to-sliding Motion. Biotribology, 2017, 10, 35-41.	0.9	1
527	Guest editorial—40th anniversary of Japanese Society for Biomaterials. Journal of Biomedical Materials Research - Part A, 2019, 107, 916-916.	2.1	1
528	Phospholipid Polymer-Grafted Poly(Ether-Ether-Ketone) by Self-Initiated Surface Grafting. , 2019, , 249-260.		1
529	Effects of a roughened femoral head and the locus of grafting on the wear resistance of the phospholipid polymer-grafted acetabular liner. Acta Biomaterialia, 2019, 86, 338-349.	4.1	1
530	Facile preparation of water-soluble multiwalled carbon nanotubes bearing phosphorylcholine groups for heat generation under near-infrared irradiation. Polymer Journal, 2021, 53, 1001-1009.	1.3	1
531	Improved blood compatibility of segmented polyurethane by polymeric additives having phospholipid polar group. II. Dispersion state of the polymeric additive and protein adsorption on the surface. , 1996, 32, 401.		1
532	Bone morphogenetic protein encapsulated with a biodegradable and biocompatible polymer. Journal of Biomedical Materials Research Part B, 1996, 32, 433-438.	3.0	1
533	Reduction of surface-induced platelet activation on phospholipid polymer. , 1997, 36, 508.		1
534	Why do phospholipid polymers reduce protein adsorption?. , 1998, 39, 323.		1
535	Short-term in vivo evaluation of small-diameter vascular prosthesis composed of segmented poly(etherurethane)/2-methacryloyloxyethyl phosphorylcholine polymer blend. , 1998, 43, 15.		1
536	Synthesis of polymers having a phospholipid polar group connected to a poly(oxyethylene) chain and their protein adsorption-resistance properties. , 1996, 34, 199.		1
537	Semi-interpenetrating polymer networks composed of biocompatible phospholipid polymer and segmented polyurethane. , 2000, 52, 701.		1
538	Cartilage-mimicking, Super Lubricious Bearing Surface Extends Longevity of Artificial Joint Replacements. Hyomen Kagaku, 2011, 32, 557-562.	0.0	1
539	Novel cytocompatible intracellular pH-imaging fluorescence probe composed of quantum dot and phospholipid polymer. Transactions of the Materials Research Society of Japan, 2010, 35, 147-150.	0.2	1
540	Quantum dots covered with pH responsive and biocompatible phospholipid polymer for trafficking in endocytosis process. Transactions of the Materials Research Society of Japan, 2011, 36, 265-268.	0.2	1

#	Article	IF	CITATIONS
541	Bioinspired phospholipid polymer for improvement of biofouling on titanium alloy substrate. Transactions of the Materials Research Society of Japan, 2011, 36, 573-576.	0.2	1
542	A challenge to establish in vitro anti-thrombogenic test methodology for artificial organs using a novel air-contactless pulsatile simulator. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2004, 2004.16, 217-218.	0.0	1
543	Barrier Properties of a Phospholipid Polymer Hydrogel Membrane and Its Enhancement of Stratum Corneum Function Journal of Society of Cosmetic Chemists of Japan, 1999, 33, 147-153.	0.0	1
544	Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix. Biomaterials and Biomechanics in Bioengineering, 2014, 1, 163-174.	0.1	1
545	Preparation of Magnetic Hydrogel Microparticles with Cationic Surfaces and Their Cell-Assembling Performance. ACS Biomaterials Science and Engineering, 2021, 7, 5107-5117.	2.6	1
546	Transepithelial delivery of insulin conjugated with phospholipid-mimicking polymers via biomembrane fusion-mediated transcellular pathways. Acta Biomaterialia, 2022, 140, 674-685.	4.1	1
547	Reduced Protein Adsorption on Polymer Surface Covered with a Self-Assembled Biomimetic Membrane. ACS Symposium Series, 1995, , 385-394.	0.5	0
548	Biomedical Engineering. Relationship between Blood Compatibility and Nonthrombogenic Polymer Surfaces Kagaku Kogaku Ronbunshu, 1998, 24, 217-221.	0.1	0
549	1P321 Surface modification of nanoneedle with MPC polymers for improving the biocompatibility with cell interior(Bioengineering,Poster Presentations). Seibutsu Butsuri, 2007, 47, S103.	0.0	0
550	OS2-1-4 Tribological Behavior of Super Hydrophilic Polymer Brushes. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2007, 2007.6, _OS2-1-4-1OS2-1-4-5.	0.0	0
551	Micropatterned Biorecognition Surfaces on Nonbiofouling Polymer by Living Radical Photopolymerization for High Sensitivity Biosensing. Materials Research Society Symposia Proceedings, 2008, 1093, 10401.	0.1	0
552	New Nanocomposite Biomaterials Controlling Surface and Bulk Properties using Supercritical Carbon Dioxide. Materials Research Society Symposia Proceedings, 2008, 1097, 1.	0.1	0
553	Functional Biointerface for Microfluidic Devices Using Phospholipid Polymers. Kobunshi Ronbunshu, 2008, 65, 228-234.	0.2	0
554	Nanobiofunctions on Cell Membrane-inspired Polymer Materials. Membrane, 2010, 35, 217-223.	0.0	0
555	Cell-Compatible Hydrogels: A Microfluidic Hydrogel Capable of Cell Preservation without Perfusion Culture under Cell-Based Assay Conditions (Adv. Mater. 28/2010). Advanced Materials, 2010, 22, n/a-n/a.	11.1	0
556	Surface Modification of SiO2Microchannels with Biocompatible Polymer Using Supercritical Carbon Dioxide. Japanese Journal of Applied Physics, 2010, 49, 116503.	0.8	0
557	Nano-scale Molecular Interaction Force Measurement for Analysis of Protein Adsorption on the Surfaces. Transactions of the Materials Research Society of Japan, 2014, 39, 185-188.	0.2	0

#	Article	IF	CITATIONS
559	Cytocompatible and reversible phospholipid polymer hydrogels for encapsulation to provide unified quality cells. Transactions of the Materials Research Society of Japan, 2014, 39, 279-282.	0.2	0
560	Preparation of Biocompatible Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) <i>via</i> Organotellulium-Medicated Radical Polymerization (TERP). Kobunshi Ronbunshu, 2015, 72, 335-340.	0.2	0
561	Phospholipid Polymer Multilayered Hydrogels Containing Cells for Cancer Drug Screening. Transactions of the Materials Research Society of Japan, 2015, 40, 59-63.	0.2	0
562	Focus on nanomedicine molecular science. Science and Technology of Advanced Materials, 2016, 17, 244-244.	2.8	0
563	Simultaneous patterning of proteins and cells through bioconjugation with photoreactable phospholipid polymers. RSC Advances, 2017, 7, 40669-40672.	1.7	0
564	Heteromorphic Polymer Nanoparticles in Response to Rotational Magnetic Fields for Stirring inside Living Cells. IOP Conference Series: Materials Science and Engineering, 2018, 381, 012040.	0.3	0
565	Exothermic Behavior of Cyanine Dye-Containing Polymer Micelle Irradiated by Near Infrared (NIR) in Water. Kobunshi Ronbunshu, 2019, 76, 52-60.	0.2	0
566	Development of a novel air-contactless pulsatile circuit for in vitro anti-thrombogenic tests of artificial organs. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2003, 2003.15, 361-362.	0.0	0
567	Investigation of in vitro blood compatibility test method of biomaterials for artificial hearts. Journal of Life Support Engineering, 2004, 16, 157-158.	0.1	0
568	101 Infection resistant implants with nanotechnology. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2006, 2005.18, 9-10.	0.0	0
569	Comparing investigation of the testing of blood-compatibility for different biomaterials under both static and pulsatile conditions. Journal of Life Support Engineering, 2006, 18, 37-37.	0.1	0
570	Bioadhesion of Polyion Complex (PIC) Hydrogels Composed of Amphiphilic Phospholipid Polymers. Transactions of the Materials Research Society of Japan, 2007, 32, 595-598.	0.2	0
571	J0401-5-6 The evaluation method of regenerated cartilage considering surface gel lubrication. The Proceedings of the JSME Annual Meeting, 2009, 2009.6, 307-308.	0.0	0
572	Super-hydrophilic silicone hydrogels composed of interpenetrating polymer networks with phospholipid polymer. Transactions of the Materials Research Society of Japan, 2009, 34, 193-196.	0.2	0
573	0503 Investigation of thrombogenicity of titanium with different nanometric-surface-roughness. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2010, 2009.22, 77.	0.0	0
574	0301 The evaluation of cartilage surface gel lubrication using MPC-polymer brushes grafted surface The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2010, 2009.22, 31.	0.0	0
575	Continuous preparation of cytocompatible poly(2-methacryloyloxyethyl phosphorylcholine) microcapsule for cell immobilization using microfluidics. Transactions of the Materials Research Society of Japan, 2011, 36, 569-572.	0.2	0
576	Layer-by-Layer Building up of Redox Phospholipid Polymer Hydrogel Electrode for Biosensor. Transactions of the Materials Research Society of Japan, 2011, 36, 545-548.	0.2	0

		Καζυμικό Ιshihara		
#	Article		IF	CITATIONS
577	Preparation of Photolabile and Cytocompatible Polymer Surface to Control Cell Adhesi Detachment. Transactions of the Materials Research Society of Japan, 2012, 37, 329-3	ion and 32.	0.2	0
578	Suppression of Inflammatory Reactions on MPC Polymer Surfaces. , 2012, , 365-383.			0
579	Polymers for Artificial Joints. , 2013, , 851-884.			0
580	Elution of Two Separated Peaks after Injection of a Small Sample Volume Using an Aut Chromatography, 2014, 35, 59-62.	cosampler.	0.8	0
581	Nonthrombogenic Polymer Materials. Journal of Fiber Science and Technology, 1991, 4	47, P126-P132.	0.0	0
582	Phospholipid polymer can reduce cytotoxicity of poly (lactic acid) nanoparticles in a hi screening assay. Biomaterials and Biomechanics in Bioengineering, 2014, 1, 95-104.	gh-content	0.1	0
583	Artificial Joints. , 0, , 330-355.			0
584	1H23 Isolation of undifferentiated iPS cells using microfluidic channel immobilized wit antibody. The Proceedings of the Bioengineering Conference Annual Meeting of BED/J: 2016.28, _1H23-11H23-4	h anti-SSEA-1 SME, 2016,	0.0	0
585	Hydrogels. , 2017, , 674-684.			0
586	Introduction to bioinspired surfaces engineering for biomaterials. Journal of Materials	Chemistry B,	2.9	0

2022, 10, 2277-2279.