Erik T Thostenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4404730/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrahigh sensitivity wearable sensors enabled by electrophoretic deposition of carbon nanostructured composites onto everyday fabrics. Journal of Materials Chemistry C, 2022, 10, 1617-1624.	2.7	13
2	Comparative study of the thermoresistive behavior of carbon nanotube-based nanocomposites and multiscale hybrid composites. Composites Part B: Engineering, 2021, 222, 109068.	5.9	13
3	Rapid Nanowelding of Carbon Coatings onto Glass Fibers by Electrothermal Shock. ACS Applied Materials & Interfaces, 2020, 12, 37722-37731.	4.0	13
4	Electrophoretic deposition: Novel in situ film growth mechanism of carbon nanocomposite films within non-conductive fabrics for multi-scale hybrid composites. Composites Science and Technology, 2020, 200, 108415.	3.8	12
5	Performance Evaluation of a Carbon Nanotube Sensor for Fatigue Crack Monitoring of Metal Structures. Sensors, 2020, 20, 4383.	2.1	14
6	Damage monitoring of adhesively bonded composite-metal hybrid joints using carbon nanotube-based sensing layer. Nanocomposites, 2020, 6, 12-21.	2.2	9
7	Development of Stable Boron Nitride Nanotube and Hexagonal Boron Nitride Dispersions for Electrophoretic Deposition. Langmuir, 2020, 36, 3425-3438.	1.6	13
8	Scalable and multifunctional carbon nanotube-based textile as distributed sensors for flow and cure monitoring. Carbon, 2020, 164, 28-41.	5.4	25
9	Hierarchical Composites with Electrophoretically Deposited Carbon Nanotubes for In Situ Sensing of Deformation and Damage. Nanomaterials, 2020, 10, 1262.	1.9	9
10	Multiscale Polymer Dynamics in Hierarchical Carbon Nanotube Grafted Glass Fiber Reinforced Composites. ACS Applied Polymer Materials, 2019, 1, 1905-1917.	2.0	11
11	Carbon Nanotube Coated Textile Sensors with Ultrahigh Sensitivity for Human Motion Detection. , 2019, , .		4
12	Large-Area Carbon Nanotube-Based Flexible Composites for Ultra-Wide Range Pressure Sensing and Spatial Pressure Mapping. ACS Applied Materials & Interfaces, 2019, 11, 48370-48380.	4.0	48
13	Experimental and numerical investigation on the bond strength of self-sensing composite joints. International Journal of Adhesion and Adhesives, 2018, 84, 227-237.	1.4	5
14	Tailored glass fiber interphases via electrophoretic deposition of carbon nanotubes: Fiber and interphase characterization. Composites Science and Technology, 2018, 166, 131-139.	3.8	39
15	Novel carbon nanotube interlaminar film sensors for carbon fiber composites under uniaxial fatigue loading. Composite Structures, 2018, 189, 340-348.	3.1	29
16	Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultrawide Sensing Range. ACS Sensors, 2018, 3, 1276-1282.	4.0	103
17	6.11 Conductive Nanocomposites for Multifunctional Sensing Applications. , 2018, , 315-351.		4
18	Integration of carbon nanotube sensing skins and carbon fiber composites for monitoring and structural repair of fatigue cracked metal structures. Composite Structures, 2018, 203, 182-192.	3.1	27

2

ERIK T THOSTENSON

#	Article	IF	CITATIONS
19	Simultaneous life extension and crack monitoring of fatigue-damaged steel members using multifunctional carbon nanotube based composites. Proceedings of SPIE, 2017, , .	0.8	3
20	Functionalization and Dispersion of Carbon Nanomaterials Using an Environmentally Friendly Ultrasonicated Ozonolysis Process. Journal of Visualized Experiments, 2017, , .	0.2	3
21	Development of a Novel Integrated Strengthening and Sensing Methodology for Steel Structures Using CNT-Based Composites. Journal of Structural Engineering, 2017, 143, 04016202.	1.7	10
22	Development of Self-Sensing Carbon Nanotube-Based Composites for Civil Infrastructure Applications. Proceedings (mdpi), 2017, 1, .	0.2	0
23	A Novel Methodology for Spatial Damage Detection and Imaging Using a Distributed Carbon Nanotube-Based Composite Sensor Combined with Electrical Impedance Tomography. Journal of Nondestructive Evaluation, 2016, 35, 1.	1.1	52
24	Multiscale metrologies for process optimization of carbon nanotube polymer composites. Carbon, 2016, 108, 381-393.	5.4	24
25	A Comparison of Mechanical and Electrical Properties in Hierarchical Composites Prepared using Electrophoretic or Chemical Vapor Deposition of Carbon Nanotubes. MRS Advances, 2016, 1, 785-790.	0.5	9
26	Spatial damage detection in electrically anisotropic fiber-reinforced composites using carbon nanotube networks. Composite Structures, 2016, 141, 14-23.	3.1	62
27	Tailoring Interfacial Properties by Controlling Carbon Nanotube Coating Thickness on Glass Fibers Using Electrophoretic Deposition. ACS Applied Materials & Interfaces, 2016, 8, 1501-1510.	4.0	92
28	Processing and Characterization of a Novel Distributed Strain Sensor Using Carbon Nanotube-Based Nonwoven Composites. Sensors, 2015, 15, 17728-17747.	2.1	59
29	Self-sensing carbon nanotube composites. , 2015, , 752-784.		7
30	Polymer nanocomposite – fiber model interphases: Influence of processing and interface chemistry on mechanical performance. Chemical Engineering Journal, 2015, 269, 121-134.	6.6	55
31	Electrical characterization and modeling of carbon nanotube and carbon fiber self-sensing composites for enhanced sensing of microcracks. Materials Today Communications, 2015, 3, 17-26.	0.9	68
32	Development of structural carbon nanotube–based sensing composites for concrete structures. Journal of Intelligent Material Systems and Structures, 2014, 25, 1331-1339.	1.4	41
33	Smart tooling with integrated time domain reflectometry sensing line for non-invasive flow and cure monitoring during composites manufacturing. Composites Part A: Applied Science and Manufacturing, 2013, 47, 102-108.	3.8	25
34	Hierarchical Composite Structures Prepared by Electrophoretic Deposition of Carbon Nanotubes onto Glass Fibers. ACS Applied Materials & amp; Interfaces, 2013, 5, 2022-2032.	4.0	140
35	ELECTRIC TIME DOMAIN REFLECTOMETRY SENSORS FOR NON-INVASIVE STRUCTURAL HEALTH MONITORING OF GLASS FIBER COMPOSITES. Progress in Electromagnetics Research, 2013, 137, 551-564.	1.6	14
36	In situ thermoresistive characterization of multifunctional composites of carbon nanotubes. Polymer, 2012, 53, 5367-5374.	1.8	35

ERIK T THOSTENSON

#	Article	IF	CITATIONS
37	Carbon Nanotube-Based Multifunctional Polymer Nanocomposites. Polymer Reviews, 2012, 52, 355-416.	5.3	144
38	Localized functionally modified glass fibers with carbon nanotube networks for crack sensing in composites using time domain reflectometry. Carbon, 2012, 50, 3816-3825.	5.4	35
39	Electrophoretic deposition of carbon nanotubes onto carbon-fiber fabric for production of carbon/epoxy composites with improved mechanical properties. Carbon, 2012, 50, 4130-4143.	5.4	236
40	Processing and characterization of multi-scale hybrid composites reinforced with nanoscale carbon reinforcements and carbon fibers. Composites Part A: Applied Science and Manufacturing, 2011, 42, 337-344.	3.8	74
41	Damage mode characterization of mechanically fastened composite joints using carbon nanotube networks. Composites Part A: Applied Science and Manufacturing, 2011, 42, 2003-2009.	3.8	21
42	Tow pullout behavior of polymer-coated Kevlar fabric. Journal of Materials Science, 2011, 46, 77-89.	1.7	31
43	Formicary-like carbon nanotube/copper hybrid nanostructures for carbon fiber-reinforced composites by electrophoretic deposition. Journal of Materials Science, 2011, 46, 2359-2364.	1.7	23
44	Damage sensing of adhesively-bonded hybrid composite/steel joints using carbon nanotubes. Composites Science and Technology, 2011, 71, 1183-1189.	3.8	99
45	In situ sensing of impact damage in epoxy/glass fiber composites using percolating carbon nanotube networks. Carbon, 2011, 49, 3382-3385.	5.4	133
46	Highly conductive polymer composites based on controlled agglomeration of carbon nanotubes. Carbon, 2010, 48, 2649-2651.	5.4	71
47	A comparative study of damage sensing in fiber composites using uniformly and non-uniformly dispersed carbon nanotubes. Carbon, 2010, 48, 3788-3794.	5.4	77
48	A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites. Applied Physics Letters, 2010, 96, .	1.5	80
49	Damage characterization of 3D braided composites using carbon nanotube-based in situ sensing. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1531-1537.	3.8	68
50	Damage monitoring in fiber-reinforced composites under fatigue loading using carbon nanotube networks. Philosophical Magazine, 2010, 90, 4085-4099.	0.7	66
51	Sensing of Damage Mechanisms in Fiberâ€Reinforced Composites under Cyclic Loading using Carbon Nanotubes. Advanced Functional Materials, 2009, 19, 123-130.	7.8	203
52	Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Composites Science and Technology, 2009, 69, 801-804.	3.8	117
53	Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites. Carbon, 2009, 47, 1381-1388.	5.4	123
54	Electrical anisotropy in multiscale nanotube/fiber hybrid composites. Applied Physics Letters, 2009, 95, 073111.	1.5	41

ERIK T THOSTENSON

#	Article	IF	CITATIONS
55	Sensors and actuators based on carbon nanotubes and their composites: A review. Composites Science and Technology, 2008, 68, 1227-1249.	3.8	845
56	Carbon nanotube-based health monitoring of mechanically fastened composite joints. Composites Science and Technology, 2008, 68, 2557-2561.	3.8	84
57	Real-time <i>in situ</i> sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology, 2008, 19, 215713.	1.3	223
58	Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites. Applied Physics Letters, 2007, 91, .	1.5	597
59	Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon, 2006, 44, 3022-3029.	5.4	536
60	Nanocomposites in context. Composites Science and Technology, 2005, 65, 491-516.	3.8	1,452
61	Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. Journal Physics D: Applied Physics, 2002, 35, L77-L80.	1.3	588
62	Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001, 61, 1899-1912.	3.8	4,405
63	Microwave and conventional curing of thick-section thermoset composite laminates: Experiment and simulation. Polymer Composites, 2001, 22, 197-212.	2.3	79