Scott J Steppan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/440460/publications.pdf

Version: 2024-02-01

34 papers 2,729 citations

331670
21
h-index

395702 33 g-index

37 all docs

 $\begin{array}{c} 37 \\ \text{docs citations} \end{array}$

37 times ranked

2823 citing authors

#	Article	IF	CITATIONS
1	Evidence of a population of leaf-eared mice <i>Phyllotis vaccarum</i> above 6,000 m in the Andes and a survey of high-elevation mammals. Journal of Mammalogy, 2022, 103, 776-785.	1.3	8
2	Comparative Quantitative Genetics of the Pelvis in Four-Species of Rodents and the Conservation of Genetic Covariance and Correlation Structure. Evolutionary Biology, 2022, 49, 71-83.	1.1	3
3	Uncovering cryptic diversity does not end: a new species of leaf-eared mouse, genus <i>Phyllotis</i> (Rodentia, Cricetidae), from Central Sierras of Argentina. Mammalia, 2022, 86, 393-405.	0.7	6
4	Tempo and mode of evolution of oryzomyine rodents (Rodentia, Cricetidae, Sigmodontinae): A phylogenomic approach. Molecular Phylogenetics and Evolution, 2021, 159, 107120.	2.7	21
5	The <i>Phyllotis xanthopygus</i> complex (Rodentia, Cricetidae) in central Andes, systematics and description of a new species. Zoologica Scripta, 2021, 50, 689-706.	1.7	12
6	A rodent anchored hybrid enrichment probe set for a range of phylogenetic utility: From order to species. Molecular Ecology Resources, 2021 , , .	4.8	0
7	Discovery of the world's highest-dwelling mammal. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18169-18171.	7.1	31
8	Oceanic islands of Wallacea as a source for dispersal and diversification of murine rodents. Journal of Biogeography, 2019, 46, 2752-2768.	3.0	41
9	Ecological and Ecomorphological Specialization Are Not Associated with Diversification Rates in Muroid Rodents (Rodentia: Muroidea). Evolutionary Biology, 2018, 45, 268-286.	1.1	11
10	Disparity and Evolutionary Rate Do Not Explain Diversity Patterns in Muroid Rodents (Rodentia:) Tj ETQq0 0 0 rş	gBT /Qverl	ock 10 Tf 50 38
11	Evolutionary journey of the retroviral restriction gene <i>Fv1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10130-10135.	7.1	26
12	How small an island? Speciation by endemic mammals (<i>Apomys</i> , Muridae) on an oceanic Philippine island. Journal of Biogeography, 2018, 45, 1675-1687.	3.0	13
13	A phylogenetic test of adaptation to deserts and aridity in skull and dental morphology across rodents. Journal of Mammalogy, 2018, 99, 1197-1216.	1.3	30
14	The Role of Geography in Adaptive Radiation. American Naturalist, 2018, 192, 415-431.	2.1	28
15	Community structure in ecological assemblages of desert rodents. Biological Journal of the Linnean Society, 2018, 124, 308-318.	1.6	11
16	Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS ONE, 2017, 12, e0183070.	2.5	238
17	Doubling diversity: a cautionary tale of previously unsuspected mammalian diversity on a tropical oceanic island. Frontiers of Biogeography, 2016, 8, .	1.8	19
18	Ecomorphological diversification following continental colonization in muroid rodents (Rodentia:) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50

#	Article	IF	CITATIONS
19	Association between climate and body size in rodents: A phylogenetic test of Bergmann's rule. Mammalian Biology, 2016, 81, 219-225.	1.5	53
20	Molecular systematics of gerbils and deomyines (Rodentia: Gerbillinae, Deomyinae) and a test of desert adaptation in the tympanic bulla. Journal of Zoological Systematics and Evolutionary Research, 2015, 53, 312-330.	1.4	62
21	Testing diversification models of endemic Philippine forest mice (<i>Apomys</i>) with nuclear phylogenies across elevational gradients reveals repeated colonization of isolated mountain ranges. Journal of Biogeography, 2015, 42, 51-64.	3.0	29
22	Ecological Opportunity and Incumbency in the Diversification of Repeated Continental Colonizations by Muroid Rodents. Systematic Biology, 2013, 62, 837-864.	5.6	192
23	Aligning the Spaces: A Comment on Pollyâ€"Developmental Dynamics and G-Matrices. Evolutionary Biology, 2008, 35, 108-110.	1.1	1
24	Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): Multilocus systematics of the old endemic rodents (Muroidea: Murinae). Molecular Phylogenetics and Evolution, 2008, 47, 84-101.	2.7	187
25	Multigene phylogeny of the Old World mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. Molecular Phylogenetics and Evolution, 2005, 37, 370-388.	2.7	128
26	Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG1. Molecular Phylogenetics and Evolution, 2004, 30, 703-719.	2.7	176
27	Phylogeny and Divergence-Date Estimates of Rapid Radiations in Muroid Rodents Based on Multiple Nuclear Genes. Systematic Biology, 2004, 53, 533-553.	5.6	479
28	Molecular phylogeny of the endemic Philippine rodent Apomys (Muridae) and the dynamics of diversification in an oceanic archipelago. Biological Journal of the Linnean Society, 2003, 80, 699-715.	1.6	103
29	Comparative quantitative genetics: evolution of the G matrix. Trends in Ecology and Evolution, 2002, 17, 320-327.	8.7	467
30	Flexural stiffness patterns of butterfly wings (Papilionoidea). The Journal of Research on the Lepidoptera, 2000, 35, 61-77.	0.1	40
31	Molecular Phylogeny of the Marmots (Rodentia: Sciuridae): Tests of Evolutionary and Biogeographic Hypotheses. Systematic Biology, 1999, 48, 715-734.	5.6	111
32	Phylogenetic Analysis of Phenotypic Covariance Structure. I. Contrasting Results from Matrix Correlation and Common Principal Component Analysis. Evolution; International Journal of Organic Evolution, 1997, 51, 571.	2.3	55
33	PHYLOGENETIC ANALYSIS OF PHENOTYPIC COVARIANCE STRUCTURE. I. CONTRASTING RESULTS FROM MATRIX CORRELATION AND COMMON PRINCIPAL COMPONENT ANALYSES. Evolution; International Journal of Organic Evolution, 1997, 51, 571-586.	2.3	57
34	PHYLOGENETIC ANALYSIS OF PHENOTYPIC COVARIANCE STRUCTURE. II. RECONSTRUCTING MATRIX EVOLUTION. Evolution; International Journal of Organic Evolution, 1997, 51, 587-594.	2.3	44