List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4404242/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Quasi-SMILES as a basis to build up models of endpoints for nanomaterials. Environmental Technology (United Kingdom), 2023, 44, 4460-4467.	1.2	2
2	SARS-CoV M ^{pro} inhibitory activity of aromatic disulfide compounds: QSAR model. Journal of Biomolecular Structure and Dynamics, 2022, 40, 780-786.	2.0	23
3	Paradox of â€~ideal correlations': improved model for air half-life of persistent organic pollutants. Environmental Technology (United Kingdom), 2022, 43, 2510-2515.	1.2	7
4	QSAR models for soil ecotoxicity: Development and validation of models to predict reproductive toxicity of organic chemicals in the collembola Folsomia candida. Journal of Hazardous Materials, 2022, 423, 127236.	6.5	22
5	The system of self-consistent QSPR-models for refractive index of polymers. Structural Chemistry, 2022, 33, 617-624.	1.0	6
6	The system of self-consistent models for vapour pressure. Chemical Physics Letters, 2022, 790, 139354.	1.2	9
7	The development of nano-QSPR models for viscosity of nanofluids using the index of ideality of correlation and the correlation intensity index. Chemometrics and Intelligent Laboratory Systems, 2022, 222, 104500.	1.8	10
8	How fullerene derivatives (FDs) act on therapeutically important targets associated with diabetic diseases. Computational and Structural Biotechnology Journal, 2022, 20, 913-924.	1.9	9
9	Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment. Science of the Total Environment, 2022, 823, 153747.	3.9	22
10	The searching for agents for Alzheimer's disease treatment via the system of self-consistent models. Toxicology Mechanisms and Methods, 2022, , 1-9.	1.3	13
11	A regression-based QSAR-model to predict acute toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica): Calibration, validation, and future developments to support risk assessment of chemicals in amphibians. Science of the Total Environment, 2022, 830, 154795.	3.9	10
12	Use of quasi-SMILES to build models based on quantitative results from experiments with nanomaterials. Chemosphere, 2022, 303, 135086.	4.2	10
13	Carcinogenicity prediction using the index of ideality of correlation. SAR and QSAR in Environmental Research, 2022, 33, 419-428.	1.0	4
14	Monte Carlo Models for Sub-Chronic Repeated-Dose Toxicity: Systemic and Organ-Specific Toxicity. International Journal of Molecular Sciences, 2022, 23, 6615.	1.8	6
15	Pesticides, cosmetics, drugs: identical and opposite influences of various molecular features as measures of endpoints similarity and dissimilarity. Molecular Diversity, 2021, 25, 1137-1144.	2.1	2
16	Integrated <i>In Silico</i> Models for the Prediction of No-Observed-(Adverse)-Effect Levels and Lowest-Observed-(Adverse)-Effect Levels in Rats for Sub-chronic Repeated-Dose Toxicity. Chemical Research in Toxicology, 2021, 34, 247-257.	1.7	13
17	EFSA's OpenFoodTox: An open source toxicological database on chemicals in food and feed and its future developments. Environment International, 2021, 146, 106293.	4.8	36
18	Prediction of the selfâ€accelerating decomposition temperature of organic peroxides. Process Safety Progress, 2021, 40, e12189.	0.4	6

#	Article	IF	CITATIONS
19	Can the Monte Carlo method predict the toxicity of binary mixtures?. Environmental Science and Pollution Research, 2021, 28, 39493-39500.	2.7	4
20	Maintenance, update and further development of EFSA's Chemical Hazards: OpenFoodTox 2.0. EFSA Supporting Publications, 2021, 18, 6476E.	0.3	2
21	The Monte Carlo method to build up models of the hydrolysis half-lives of organic compounds. SAR and QSAR in Environmental Research, 2021, 32, 463-471.	1.0	8
22	The self-organizing vector of atom-pairs proportions: use to develop models for melting points. Structural Chemistry, 2021, 32, 967-971.	1.0	7
23	The unreliability of the reliability criteria in the estimation of QSAR for skin sensitivity: A pun or a reliable law?. Toxicology Letters, 2021, 340, 133-140.	0.4	11
24	The index of ideality of correlation improves the predictive potential of models of the antioxidant activity of tripeptides from frog skin (Litoria rubella). Computers in Biology and Medicine, 2021, 133, 104370.	3.9	13
25	The System of Self-Consistent of Models: A New Approach to Build Up and Validation of Predictive Models of the Octanol/Water Partition Coefficient for Gold Nanoparticles. International Journal of Environmental Research, 2021, 15, 709-722.	1.1	16
26	Quasi-SMILES as a basis for the development of models for the toxicity of ZnO nanoparticles. Science of the Total Environment, 2021, 772, 145532.	3.9	20
27	The QSAR-search of effective agents towards coronaviruses applying the Monte Carlo method. SAR and QSAR in Environmental Research, 2021, 32, 689-698.	1.0	6
28	Using quasi-SMILES for the predictive modeling of the safety of 574 metal oxide nanoparticles measured in different experimental conditions. Environmental Toxicology and Pharmacology, 2021, 86, 103665.	2.0	19
29	Application of quasi-SMILES to the model of gold-nanoparticles uptake in A549Âcells. Computers in Biology and Medicine, 2021, 136, 104720.	3.9	8
30	Semi-correlations as a tool to model for skin sensitization. Food and Chemical Toxicology, 2021, 157, 112580.	1.8	4
31	The sequence of amino acids as the basis for the model of biological activity of peptides. Theoretical Chemistry Accounts, 2021, 140, 15.	0.5	5
32	The system of self-consistent semi-correlations as one of the tools of cheminformatics for designing antiviral drugs. New Journal of Chemistry, 2021, 45, 20713-20720.	1.4	7
33	The system of self-consistent models for the uptake of nanoparticles in PaCa2 cancer cells. Nanotoxicology, 2021, 15, 995-1004.	1.6	7
34	The index of ideality of correlation: models for flammability of binary liquid mixtures. Chemical Papers, 2020, 74, 601-609.	1.0	18
35	QSAR-Models, Validation, and IIC-Paradox for Drug Toxicity. International Journal of Quantitative Structure-Property Relationships, 2020, 5, 22-43.	1.1	1
36	Use of the index of ideality of correlation to improve aquatic solubility model. Journal of Molecular Graphics and Modelling, 2020, 96, 107525.	1.3	14

#	Article	IF	CITATIONS
37	Predicting acute contact toxicity of organic binary mixtures in honey bees (A. mellifera) through innovative QSAR models. Science of the Total Environment, 2020, 704, 135302.	3.9	38
38	How the CORAL software can be used to select compounds for efficient treatment of neurodegenerative diseases?. Toxicology and Applied Pharmacology, 2020, 408, 115276.	1.3	6
39	Zebrafish AC modelling: (Q)SAR models to predict developmental toxicity in zebrafish embryo. Ecotoxicology and Environmental Safety, 2020, 202, 110936.	2.9	13
40	QSAR model for pesticides toxicity to Rainbow Trout based on "ideal correlations― Aquatic Toxicology, 2020, 227, 105589.	1.9	14
41	Ecosystem ecology: Models for acute toxicity of pesticides towards Daphnia magna. Environmental Toxicology and Pharmacology, 2020, 80, 103459.	2.0	13
42	Advancement of predictive modeling of zeta potentials (ζ) in metal oxide nanoparticles with correlation intensity index (CII). Journal of Molecular Liquids, 2020, 317, 113929.	2.3	15
43	Applying the Monte Carlo technique to build up models of glass transition temperatures of diverse polymers. Structural Chemistry, 2020, 31, 1739-1743.	1.0	7
44	â€~Ideal correlations' for the predictive toxicity to <i>Tetrahymena pyriformis</i> . Toxicology Mechanisms and Methods, 2020, 30, 605-610.	1.3	6
45	Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles. Nanotoxicology, 2020, 14, 1118-1126.	1.6	34
46	Prediction of No Observed Adverse Effect Concentration for inhalation toxicity using Monte Carlo approach. SAR and QSAR in Environmental Research, 2020, 31, 1-12.	1.0	8
47	QSPR/QSAR: State-of-Art, Weirdness, the Future. Molecules, 2020, 25, 1292.	1.7	42
48	Fullerenes C ₆₀ and C ₇₀ : a model for solubility by applying the correlation intensity index. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 900-906.	1.0	16
49	Correlation intensity index: Building up models for mutagenicity of silver nanoparticles. Science of the Total Environment, 2020, 737, 139720.	3.9	32
50	The using of the Index of Ideality of Correlation (IIC) to improve predictive potential of models of water solubility for pesticides. Environmental Science and Pollution Research, 2020, 27, 13339-13347.	2.7	21
51	The index of ideality of correlation: models of the flash points of ternary mixtures. New Journal of Chemistry, 2020, 44, 4858-4868.	1.4	12
52	QSAR models for biocides: The example of the prediction of <i>Daphnia magna</i> acute toxicity. SAR and QSAR in Environmental Research, 2020, 31, 227-243.	1.0	22
53	The Use of the Index of Ideality of Correlation to Build Up Models for Bioconcentration Factor. Molecular Informatics, 2020, 39, e1900070.	1.4	12
54	The index of ideality of correlation and the variety of molecular rings as a base to improve model of HIV-1 protease inhibitors activity. Structural Chemistry, 2020, 31, 1441-1448.	1.0	6

#	Article	IF	CITATIONS
55	Correlation Intensity Index (CII) as a criterion of predictive potential: Applying to model thermal conductivity of metal oxide-based ethylene glycol nanofluids. Chemical Physics Letters, 2020, 754, 137614.	1.2	22
56	The Monte Carlo Method as a Tool to Build up Predictive QSPR/QSAR. Current Computer-Aided Drug Design, 2020, 16, 197-206.	0.8	9
57	Medicinal Chemistry and Computational Chemistry: Mutual Influence and Harmonization. Mini-Reviews in Medicinal Chemistry, 2020, 20, 1320-1321.	1.1	Ο
58	Interpretable SMILES-based QSAR model of inhibitory activity of sirtuins 1 and 2. Combinatorial Chemistry and High Throughput Screening, 2020, 23, .	0.6	1
59	Semi-correlations combined with the index of ideality of correlation: a tool to build up model of mutagenic potential. Molecular and Cellular Biochemistry, 2019, 452, 133-140.	1.4	13
60	Use of the index of ideality of correlation to improve predictive potential for biochemical endpoints. Toxicology Mechanisms and Methods, 2019, 29, 43-52.	1.3	26
61	CORAL: Building up QSAR models for the chromosome aberration test. Saudi Journal of Biological Sciences, 2019, 26, 1101-1106.	1.8	25
62	QSPR as a random event: solubility of fullerenes C[60] and C[70]. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 816-821.	1.0	8
63	QSAR Development for Plasma Protein Binding: Influence of the Ionization State. Pharmaceutical Research, 2019, 36, 28.	1.7	11
64	Idealization of correlations between optimal simplified molecular input-line entry system-based descriptors and skin sensitization. SAR and QSAR in Environmental Research, 2019, 30, 447-455.	1.0	19
65	QSAR as a random event: criteria of predictive potential for a chance model. Structural Chemistry, 2019, 30, 1677-1683.	1.0	32
66	The Correlation Contradictions Index (CCI): Building up reliable models of mutagenic potential of silver nanoparticles under different conditions using quasi-SMILES. Science of the Total Environment, 2019, 681, 102-109.	3.9	29
67	Combinations of graph invariants and attributes of simplified molecular input-line entry system (SMILES) to build up models for sweetness. Food Research International, 2019, 122, 40-46.	2.9	32
68	"Ideal correlations―for biological activity of peptides. BioSystems, 2019, 181, 51-57.	0.9	11
69	The Index of Ideality of Correlation (IIC): model for sweetness. Monatshefte Für Chemie, 2019, 150, 617-623.	0.9	5
70	The Index of Ideality of Correlation: QSAR Model of Acute Toxicity for Zebrafish (Danio rerio) Embryo. International Journal of Environmental Research, 2019, 13, 387-394.	1.1	7
71	Does the Index of Ideality of Correlation Detect the Better Model Correctly?. Molecular Informatics, 2019, 38, e1800157.	1.4	41
72	Estimation of 2D autocorrelation descriptors and 2D Monte Carlo descriptors as a tool to build up predictive models for acetylcholinesterase (AChE) inhibitory activity. Chemometrics and Intelligent Laboratory Systems, 2019, 184, 14-21.	1.8	18

#	Article	IF	CITATIONS
73	Semi-correlations as a tool to build up categorical (active/inactive) model of GABAA receptor modulator activity. Structural Chemistry, 2019, 30, 853-861.	1.0	7
74	The study of the index of ideality of correlation as a new criterion of predictive potential of QSPR/QSAR-models. Science of the Total Environment, 2019, 659, 1387-1394.	3.9	43
75	QSPR and nano-QSPR: What is the difference?. Journal of Molecular Structure, 2019, 1182, 141-149.	1.8	48
76	Quasi-SMILES: quantitative structure–activity relationships to predict anticancer activity. Molecular Diversity, 2019, 23, 403-412.	2.1	15
77	The index of ideality of correlation: improvement of models for toxicity to algae. Natural Product Research, 2019, 33, 2200-2207.	1.0	22
78	Application of the Monte Carlo Method for the Prediction of Behavior of Peptides. Current Protein and Peptide Science, 2019, 20, 1151-1157.	0.7	5
79	Whether the Validation of the Predictive Potential of Toxicity Models is a Solved Task?. Current Topics in Medicinal Chemistry, 2019, 19, 2643-2657.	1.0	5
80	Virtual Screening of Anti-Cancer Compounds: Application of Monte Carlo Technique. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 148-153.	0.9	4
81	Mutagenicity, anticancer activity and blood brain barrier: similarity and dissimilarity of molecular alerts. Toxicology Mechanisms and Methods, 2018, 28, 321-327.	1.3	12
82	QSPR analysis of threshold of odor for the large number of heterogenic chemicals. Molecular Diversity, 2018, 22, 397-403.	2.1	3
83	CORAL: QSAR models for carcinogenicity of organic compounds for male and female rats. Computational Biology and Chemistry, 2018, 72, 26-32.	1.1	23
84	Use of quasi-SMILES to model biological activity of "micelle–polymer―samples. Structural Chemistry, 2018, 29, 1213-1223.	1.0	10
85	Application of the Monte Carlo method for building up models for octanol-water partition coefficient of platinum complexes. Chemical Physics Letters, 2018, 701, 137-146.	1.2	16
86	The application of new HARD-descriptor available from the CORAL software to building up NOAEL models. Food and Chemical Toxicology, 2018, 112, 544-550.	1.8	33
87	Index of Ideality of Correlation: new possibilities to validate QSAR: a case study. Structural Chemistry, 2018, 29, 33-38.	1.0	61
88	Predicting Cytotoxicity of 2-Phenylindole Derivatives Against Breast Cancer Cells Using Index of Ideality of Correlation. Anticancer Research, 2018, 38, 6189-6194.	0.5	29
89	Use of the index of ideality of correlation to improve models of eco-toxicity. Environmental Science and Pollution Research, 2018, 25, 31771-31775.	2.7	27
90	The index of ideality of correlation: hierarchy of Monte Carlo models for glass transition temperatures of polymers. Journal of Polymer Research, 2018, 25, 1.	1.2	12

#	Article	IF	CITATIONS
91	Design and development of novel antibiotics based on FtsZ inhibition – <i>in silico</i> studies. New Journal of Chemistry, 2018, 42, 10976-10982.	1.4	27
92	Prediction of antimicrobial activity of large pool of peptides using quasi-SMILES. BioSystems, 2018, 169-170, 5-12.	0.9	13
93	SAR for gastro-intestinal absorption and blood-brain barrier permeation of pesticides. Chemico-Biological Interactions, 2018, 290, 1-5.	1.7	10
94	CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES. Chemosphere, 2018, 210, 52-56.	4.2	15
95	Prediction of Biochemical Endpoints by the CORAL Software: Prejudices, Paradoxes, and Results. Methods in Molecular Biology, 2018, 1800, 573-583.	0.4	6
96	Quasi-SMILES as a tool to predict removal rates of pharmaceuticals and dyes in sewage. Chemical Engineering Research and Design, 2018, 118, 227-233.	2.7	11
97	Towards the Development of Global Nano-Quantitative Structure–Property Relationship Models: Zeta Potentials of Metal Oxide Nanoparticles. Nanomaterials, 2018, 8, 243.	1.9	31
98	Editorial; Impact of Drug Metabolism and its Relevance upon Drug Discovery. Current Drug Metabolism, 2018, 18, 1070-1070.	0.7	0
99	CORAL: Monte Carlo Method to Predict Endpoints for Medical Chemistry. Mini-Reviews in Medicinal Chemistry, 2018, 18, 382-391.	1.1	20
100	Blood Brain Barrier and Alzheimer's Disease: Similarity and Dissimilarity of Molecular Alerts. Current Neuropharmacology, 2018, 16, 769-785.	1.4	19
101	Quantitative Structure-activity Relationship Study of Betulinic Acid Derivatives Against HIV using SMILES-based Descriptors. Current Computer-Aided Drug Design, 2018, 14, 152-159.	0.8	6
102	CORAL: Binary classifications (active/inactive) for drug-induced liver injury. Toxicology Letters, 2017, 268, 51-57.	0.4	38
103	Large-scale classification of P-glycoprotein inhibitors using SMILES-based descriptors. SAR and QSAR in Environmental Research, 2017, 28, 1-16.	1.0	18
104	Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data. Journal of Theoretical Biology, 2017, 416, 113-118.	0.8	36
105	CORAL and Nano-QFAR: Quantitative feature – Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co 3 O 4 , and TiO 2). Ecotoxicology and Environmental Safety, 2017, 139, 404-407.	2.9	29
106	The index of ideality of correlation: A criterion of predictability of QSAR models for skin permeability?. Science of the Total Environment, 2017, 586, 466-472.	3.9	92
107	QSAR model for blood-brain barrier permeation. Journal of Pharmacological and Toxicological Methods, 2017, 88, 7-18.	0.3	33
108	The index of ideality of correlation: A criterion of predictive potential of QSPR/QSAR models?. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2017, 819, 31-37.	0.9	107

#	Article	IF	CITATIONS
109	QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA's OpenFoodTox database. Environmental Toxicology and Pharmacology, 2017, 53, 158-163.	2.0	52
110	Hybrid optimal descriptors as a tool to predict skin sensitization in accordance to OECD principles. Toxicology Letters, 2017, 275, 57-66.	0.4	38
111	Prediction of gas chromatographic retention indices based on Monte Carlo method. Talanta, 2017, 168, 257-262.	2.9	11
112	Developing innovative in silico models with EFSA's OpenFoodTox database. EFSA Supporting Publications, 2017, 14, 1206E.	0.3	10
113	QSAR of antimycobacterial activity of benzoxazoles by optimal SMILES-based descriptors. Medicinal Chemistry Research, 2017, 26, 3203-3208.	1.1	6
114	Quasi-SMILES as a Novel Tool for Prediction of Nanomaterials $\hat{a} \in 2$ Endpoints. , 2017, , 191-221.		5
115	CORAL Software: Analysis of Impacts of Pharmaceutical Agents Upon Metabolism via the Optimal Descriptors. Current Drug Metabolism, 2017, 18, 500-510.	0.7	10
116	Utilization of the Monte Carlo Method to Build up QSAR Models for Hemolysis and Cytotoxicity of Antimicrobial Peptides. Current Drug Discovery Technologies, 2017, 14, 229-243.	0.6	17
117	Quasi-SMILES for Nano-QSAR Prediction of Toxic Effect of Al2O3 Nanoparticles. , 2017, , 1573-1584.		0
118	QSPR/QSAR Analyses by Means of the CORAL Software. , 2017, , 929-955.		0
119	Quasi-SMILES for Nano-QSAR Prediction of Toxic Effect of Al2O3 Nanoparticles. , 2017, , 1624-1635.		0
120	Quasi-SMILES for Nano-QSAR Prediction of Toxic Effect of Al2O3 Nanoparticles. Journal of Nanotoxicology and Nanomedicine, 2016, 1, 17-28.	0.7	6
121	QSAR as a Random Event: Selecting of the Molecular Structure for Potential Anti-tuberculosis Agents. Anti-Infective Agents, 2016, 14, 3-10.	0.1	7
122	Evolution of Optimal Descriptors. International Journal of Quantitative Structure-Property Relationships, 2016, 1, 52-71.	1.1	0
123	Towards predicting the solubility of CO ₂ and N ₂ in different polymers using a quasi-SMILES based QSPR approach. SAR and QSAR in Environmental Research, 2016, 27, 293-301.	1.0	11
124	Improved building up a model of toxicity towards Pimephales promelas by the Monte Carlo method. Environmental Toxicology and Pharmacology, 2016, 48, 278-285.	2.0	8
125	A quasi-SMILES based QSPR Approach towards the prediction of adsorption energy of Ziegler â [^] Natta catalysts for propylene polymerization. Materials Discovery, 2016, 5, 22-28.	3.3	13
126	QSAR Model for Cytotoxicity of Silica Nanoparticles on Human Embryonic Kidney Cells1. Materials Today: Proceedings, 2016, 3, 847-854.	0.9	10

#	Article	IF	CITATIONS
127	Quasi-SMILES as a tool to utilize eclectic data for predicting the behavior of nanomaterials. NanoImpact, 2016, 1, 60-64.	2.4	24
128	Development of the Latest Tools for Building up "Nano-QSAR― Quantitative Features—Property/Activity Relationships (QFPRs/QFARs). , 2016, , 353-396.		0
129	The Monte Carlo technique as a tool to predict LOAEL. European Journal of Medicinal Chemistry, 2016, 116, 71-75.	2.6	34
130	Quasi-SMILES and nano-QFPR: The predictive model for zeta potentials of metal oxide nanoparticles. Chemical Physics Letters, 2016, 660, 107-110.	1.2	36
131	Odor threshold prediction by means of the Monte Carlo method. Ecotoxicology and Environmental Safety, 2016, 133, 390-394.	2.9	9
132	Assessment of nano-QSPR models of organic contaminant absorption by carbon nanotubes for ecological impact studies. Materials Discovery, 2016, 4, 22-28.	3.3	5
133	Monte Carlo–based quantitative structure–activity relationship models for toxicity of organic chemicals to <i>Daphnia magna</i> . Environmental Toxicology and Chemistry, 2016, 35, 2691-2697.	2.2	24
134	Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: A case of benzene derivatives. Environmental Toxicology and Pharmacology, 2016, 42, 135-145.	2.0	23
135	Model for electrochemical parameters for 4-(benzylsulfanyl)pyridines calculated from the molecular structure. Journal of Electroanalytical Chemistry, 2016, 766, 24-29.	1.9	2
136	QSAR model for predicting cell viability of human embryonic kidney cells exposed to SiO2 nanoparticles. Chemosphere, 2016, 144, 995-1001.	4.2	40
137	QSPR models for estimating retention in HPLC with the p solute polarity parameter based on the Monte Carlo method. Structural Chemistry, 2016, 27, 821-828.	1.0	7
138	Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions. Ecotoxicology and Environmental Safety, 2016, 124, 32-36.	2.9	40
139	QSPR Model for Dispersibility of Graphene in Various Solvents. Letters in Drug Design and Discovery, 2016, 13, 514-520.	0.4	1
140	Editorial (Thematic Issue: From Chemoinformatics to Nanoinformatics: New Tools for Drug Discovery) Tj ETQq0 (1767-1767.	0 rgBT /0 1.0	Overlock 10 Tr 3
141	A quasi-QSPR modelling for the photocatalytic decolourization rate constants and cellular viability (CV%) of nanoparticles by CORAL. SAR and QSAR in Environmental Research, 2015, 26, 29-40.	1.0	23
142	QSAR model as a random event: A case of rat toxicity. Bioorganic and Medicinal Chemistry, 2015, 23, 1223-1230.	1.4	36
143	Quasi-SMILES and nano-QFAR: United model for mutagenicity of fullerene and MWCNT under different conditions. Chemosphere, 2015, 139, 18-22.	4.2	66
144	QSAR models for 1,2,4-benzotriazines as Src inhibitors based on Monte Carlo method. Medicinal Chemistry Research, 2015, 24, 283-290.	1.1	5

#	Article	IF	CITATIONS
145	Large-scale structure-activity relationship study of hepatitis C virus NS5B polymerase inhibition using SMILES-based descriptors. Molecular Diversity, 2015, 19, 955-964.	2.1	13
146	CORAL: Model for octanol/water partition coefficient. Fluid Phase Equilibria, 2015, 397, 44-49.	1.4	15
147	CORAL: model for no observed adverse effect level (NOAEL). Molecular Diversity, 2015, 19, 563-575.	2.1	20
148	Prediction of retention characteristics of heterocyclic compounds. Analytical and Bioanalytical Chemistry, 2015, 407, 9185-9189.	1.9	2
149	Prediction of the Q-e parameters from structures of transfer chain agents. Journal of Polymer Research, 2015, 22, 1.	1.2	2
150	CORAL: Prediction of binding affinity and efficacy of thyroid hormone receptor ligands. European Journal of Medicinal Chemistry, 2015, 101, 452-461.	2.6	17
151	In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method. International Journal of Pharmaceutics, 2015, 495, 404-409.	2.6	21
152	Monte Carlo Methodâ€Based QSAR Modeling of Penicillins Binding to Human Serum Proteins. Archiv Der Pharmazie, 2015, 348, 62-67.	2.1	24
153	QSAR as a random event: a case of NOAEL. Environmental Science and Pollution Research, 2015, 22, 8264-8271.	2.7	43
154	Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes. Chemosphere, 2015, 124, 40-46.	4.2	71
155	QSPR studies on refractive indices of structurally heterogeneous polymers. Chemometrics and Intelligent Laboratory Systems, 2015, 140, 86-91.	1.8	50
156	Optimal nano-descriptors as translators of eclectic data into prediction of the cell membrane damage by means of nano metal-oxides. Environmental Science and Pollution Research, 2015, 22, 745-757.	2.7	41
157	Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Ecotoxicology and Environmental Safety, 2015, 112, 39-45.	2.9	83
158	The Monte Carlo Method Based on Eclectic Data as an Efficient Tool for Predictions of Endpoints for Nanomaterials - Two Examples of Application. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 376-386.	0.6	10
159	Mutagenicity: QSAR - quasi-QSAR - nano-QSAR. Mini-Reviews in Medicinal Chemistry, 2015, 15, 608-621.	1.1	29
160	Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials. Current Topics in Medicinal Chemistry, 2015, 15, 1837-1844.	1.0	20
161	QSAR Models for the Reactivation of Sarin Inhibited Acetylcholinesterase by Quaternary Pyridinium Oximes Based on Monte Carlo Method. Current Computer-Aided Drug Design, 2015, 10, 266-273.	0.8	5
162	QSPR/QSAR Analyses by Means of the CORAL Software. Advances in Chemical and Materials Engineering Book Series, 2015, , 560-585.	0.2	10

#	Article	IF	CITATIONS
163	Discovery of Potential, Nonâ€Toxic Influenza Virus Inhibitor by Computational Techniques. Molecular Informatics, 2014, 33, 559-565.	1.4	6
164	Monte Carlo Method Based QSAR Modeling of Coumarin Derivates as Potent HIVâ€1 Integrase Inhibitors and Molecular Docking Studies of Selected 4â€phenyl Hydroxycoumarins. Acta Facultatis Medicae Naissensis, 2014, 31, 95-103.	0.1	14
165	SMILES-based quantitative structure–retention relationships for RP HPLC of 1-phenyl-5-benzylsulfanyltetrazoles. Structural Chemistry, 2014, 25, 311-317.	1.0	13
166	Building up QSAR model for toxicity of psychotropic drugs by the Monte Carlo method. Structural Chemistry, 2014, 25, 1067-1073.	1.0	7
167	Optimal descriptors as a tool to predict the thermal decomposition of polymers. Journal of Mathematical Chemistry, 2014, 52, 1171-1181.	0.7	15
168	CORAL software: Prediction of carcinogenicity of drugs by means of the Monte Carlo method. European Journal of Pharmaceutical Sciences, 2014, 52, 21-25.	1.9	77
169	Conformation-independent QSAR on c-Src tyrosine kinase inhibitors. Chemometrics and Intelligent Laboratory Systems, 2014, 134, 47-52.	1.8	10
170	Comprehension of drug toxicity: Software and databases. Computers in Biology and Medicine, 2014, 45, 20-25.	3.9	69
171	Optimal descriptor as a translator of eclectic data into endpoint prediction: Mutagenicity of fullerene as a mathematical function of conditions. Chemosphere, 2014, 104, 262-264.	4.2	56
172	QSAR model for cytotoxicity of SiO2 nanoparticles on human lung fibroblasts. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	21
173	Large-scale QSAR study of aromatase inhibitors using SMILES-based descriptors. Chemometrics and Intelligent Laboratory Systems, 2014, 138, 120-126.	1.8	51
174	Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: The case of a group of ZnO and TiO2 nanoparticles. Ecotoxicology and Environmental Safety, 2014, 108, 203-209.	2.9	27
175	QSAR models for HEPT derivates as NNRTI inhibitors based on Monte Carlo method. European Journal of Medicinal Chemistry, 2014, 77, 298-305.	2.6	57
176	QSAR Models for Anti-Malarial Activity of 4-Aminoquinolines. Current Computer-Aided Drug Design, 2014, 10, 75-82.	0.8	19
177	QSAR Models for the Reactivation of Sarin Inhibited AChE by Quaternary Pyridinium Oximes Based on Monte Carlo Method. Current Computer-Aided Drug Design, 2014, , .	0.8	0
178	Optimal descriptor as a translator of eclectic information into the prediction of thermal conductivity of micro-electro-mechanical systems. Journal of Mathematical Chemistry, 2013, 51, 2230-2237.	0.7	12
179	SMILES-based quantitative structure–property relationships for half-wave potential of N-benzylsalicylthioamides. European Journal of Medicinal Chemistry, 2013, 67, 111-114.	2.6	26
180	QSAR models for inhibitors of physiological impact of Escherichia coli that leads to diarrhea. Biochemical and Biophysical Research Communications, 2013, 432, 214-225.	1.0	11

#	Article	IF	CITATIONS
181	In silico methods to predict drug toxicity. Current Opinion in Pharmacology, 2013, 13, 802-806.	1.7	72
182	The definition of the molecular structure for potential anti-malaria agents by the Monte Carlo method. Structural Chemistry, 2013, 24, 1369-1381.	1.0	22
183	Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO2 nanoparticles. Chemosphere, 2013, 93, 2650-2655.	4.2	63
184	CORAL: QSPR model of water solubility based on local and global SMILES attributes. Chemosphere, 2013, 90, 877-880.	4.2	34
185	Development of QSAR models for predicting anti-HIV-1 activity using the Monte Carlo method. Open Chemistry, 2013, 11, 371-380.	1.0	4
186	QSAR as a random event: Modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere, 2013, 92, 31-37.	4.2	133
187	CORAL: QSPRs of enthalpies of formation of organometallic compounds. Journal of Mathematical Chemistry, 2013, 51, 1684-1693.	0.7	7
188	CORAL: Monte Carlo Method as a Tool for the Prediction of the Bioconcentration Factor of Industrial Pollutants. Molecular Informatics, 2013, 32, 145-154.	1.4	21
189	CORAL: Classification Model for Predictions of Anti-Sarcoma Activity. Current Topics in Medicinal Chemistry, 2013, 12, 2741-2744.	1.0	7
190	OCWLGI Descriptors: Theory and Praxis. Current Computer-Aided Drug Design, 2013, 9, 226-232.	0.8	9
191	CORAL: Binary Classifications (Active/Inactive) for Liver-Related Adverse Effects of Drugs. Current Drug Safety, 2012, 7, 257-261.	0.3	14
192	CORAL: Quantitative models for estimating bioconcentration factor of organic compounds. Chemometrics and Intelligent Laboratory Systems, 2012, 118, 70-73.	1.8	6
193	CORAL: Models of toxicity of binary mixtures. Chemometrics and Intelligent Laboratory Systems, 2012, 119, 39-43.	1.8	23
194	Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli. Chemosphere, 2012, 89, 1098-1102.	4.2	96
195	The average numbers of outliers over groups of various splits into training and test sets: A criterion of the reliability of a QSPR? A case of water solubility. Chemical Physics Letters, 2012, 542, 134-137.	1.2	4
196	QSAR models for ACE-inhibitor activity of tri-peptides based on representation of the molecular structure by graph of atomic orbitals and SMILES. Structural Chemistry, 2012, 23, 1873-1878.	1.0	27
197	QSAR modeling of endpoints for peptides which is based on representation of the molecular structure by a sequence of amino acids. Structural Chemistry, 2012, 23, 1891-1904.	1.0	29
198	Coral: QSPR modeling of rate constants of reactions between organic aromatic pollutants and hydroxyl radical. Journal of Computational Chemistry, 2012, 33, 1902-1906.	1.5	30

#	Article	IF	CITATIONS
199	QSAR Models for Toxicity of Organic Substances to <i>Daphnia magna</i> Built up by Using the CORAL Freeware. Chemical Biology and Drug Design, 2012, 79, 332-338.	1.5	18
200	CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna. Chemometrics and Intelligent Laboratory Systems, 2012, 110, 177-181.	1.8	57
201	CORAL: Predictions of rate constants of hydroxyl radical reaction using representation of the molecular structure obtained by combination of SMILES and Graph approaches. Chemometrics and Intelligent Laboratory Systems, 2012, 112, 65-70.	1.8	23
202	CORAL: the prediction of biodegradation of organic compounds with optimal SMILES-based descriptors. Open Chemistry, 2012, 10, 1042-1048.	1.0	7
203	Coral: QSAR models for acute toxicity in fathead minnow (<i>Pimephales promelas</i>). Journal of Computational Chemistry, 2012, 33, 1218-1223.	1.5	23
204	SMILES-based optimal descriptors: QSAR modeling of estrogen receptor binding affinity by correlation balance. Structural Chemistry, 2012, 23, 529-544.	1.0	8
205	Calculation of Molecular Features with Apparent Impact on Both Activity of Mutagens and Activity of Anticancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 807-817.	0.9	10
206	Simplified Molecular Inputâ€Line Entry System and International Chemical Identifier in the QSAR Analysis of Styrylquinoline Derivatives as HIVâ€1 Integrase Inhibitors. Chemical Biology and Drug Design, 2011, 77, 343-360.	1.5	9
207	<scp>coral</scp> Software: QSAR for Anticancer Agents. Chemical Biology and Drug Design, 2011, 77, 471-476.	1.5	36
208	Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines. Chemometrics and Intelligent Laboratory Systems, 2011, 109, 94-100.	1.8	53
209	QSAR modelling toxicity toward rats of inorganic substances by means of CORAL. Open Chemistry, 2011, 9, 75-85.	1.0	17
210	Analysis of the co-evolutions of correlations as a tool for QSAR-modeling of carcinogenicity: an unexpected good prediction based on a model that seems untrustworthy. Open Chemistry, 2011, 9, 165-174.	1.0	26
211	QSAR modeling of anxiolytic activity taking into account the presence of keto- and enol-tautomers by balance of correlations with ideal slopes. Open Chemistry, 2011, 9, 846-854.	1.0	5
212	CORAL: QSPR models for solubility of [C60] and [C70] fullerene derivatives. Molecular Diversity, 2011, 15, 249-256.	2.1	31
213	CORAL: Quantitative structure–activity relationship models for estimating toxicity of organic compounds in rats. Journal of Computational Chemistry, 2011, 32, 2727-2733.	1.5	94
214	Co-evolutions of correlations for QSAR of toxicity of organometallic and inorganic substances: An unexpected good prediction based on a model that seems untrustworthy. Chemometrics and Intelligent Laboratory Systems, 2011, 105, 215-219.	1.8	39
215	CORAL: Building up the model for bioconcentration factor and defining it's applicability domain. European Journal of Medicinal Chemistry, 2011, 46, 1400-1403.	2.6	57
216	SMILES-based QSAR Approaches for Carcinogenicity and Anticancer Activity: Comparison of Correlation Weights for Identical SMILES Attributes. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 974-982.	0.9	26

#	Article	IF	CITATIONS
217	SMILESâ€based optimal descriptors: QSAR analysis of fullereneâ€based HIVâ€1 PR inhibitors by means of balance of correlations. Journal of Computational Chemistry, 2010, 31, 381-392.	1.5	47
218	QSPR modelling of normal boiling points and octanol/water partition coefficient for acyclic and cyclic hydrocarbons using SMILES-based optimal descriptors. Open Chemistry, 2010, 8, 1047-1052.	1.0	6
219	QSPR modeling of octanol/water partition coefficient of antineoplastic agents by balance of correlations. European Journal of Medicinal Chemistry, 2010, 45, 1639-1647.	2.6	14
220	Use of the international chemical identifier for constructing QSPR-model of normal boiling points of acyclic carbonyl substances. Journal of Mathematical Chemistry, 2010, 47, 355-369.	0.7	6
221	QSAR analysis of 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines exhibiting anticancer activity by optimal SMILES-based descriptors. Journal of Mathematical Chemistry, 2010, 47, 647-666.	0.7	10
222	QSAR modeling of measured binding affinity for fullerene-based HIV-1 PR inhibitors by CORAL. Journal of Mathematical Chemistry, 2010, 48, 959-987.	0.7	46
223	QSAR-modeling of toxicity of organometallic compounds by means of the balance of correlations for InChI-based optimal descriptors. Molecular Diversity, 2010, 14, 183-192.	2.1	20
224	QSAR modelling of the toxicity to Tetrahymena pyriformis by balance of correlations. Molecular Diversity, 2010, 14, 821-827.	2.1	18
225	InChI-based optimal descriptors: QSAR analysis of fullerene[C60]-based HIV-1 PR inhibitors by correlation balance. European Journal of Medicinal Chemistry, 2010, 45, 1387-1394.	2.6	29
226	SMILES-based optimal descriptors: QSAR modeling of carcinogenicity by balance of correlations with ideal slopes. European Journal of Medicinal Chemistry, 2010, 45, 3581-3587.	2.6	42
227	A new bioconcentration factor model based on SMILES and indices of presence of atoms. European Journal of Medicinal Chemistry, 2010, 45, 4399-4402.	2.6	29
228	Additive SMILES-Based Carcinogenicity Models: Probabilistic Principles in the Search for Robust Predictions. International Journal of Molecular Sciences, 2009, 10, 3106-3127.	1.8	39
229	QSPR modeling of enthalpies of formation for organometallic compounds by SMARTâ€based optimal descriptors. Journal of Computational Chemistry, 2009, 30, 2576-2582.	1.5	10
230	QSPR modeling bioconcentration factor (BCF) by balance of correlations. European Journal of Medicinal Chemistry, 2009, 44, 2544-2551.	2.6	29
231	QSAR modelling of carcinogenicity by balance of correlations. Molecular Diversity, 2009, 13, 367-373.	2.1	22
232	QSPR modeling of octanol water partition coefficient of platinum complexes by InChI-based optimal descriptors. Journal of Mathematical Chemistry, 2009, 46, 1060-1073.	0.7	15
233	Additive InChI-based optimal descriptors: QSPR modeling of fullerene C 60 solubility in organic solvents. Journal of Mathematical Chemistry, 2009, 46, 1232-1251.	0.7	36
234	QSAR Modelling for Mutagenic Potency of Heteroaromatic Amines by Optimal SMILESâ€based Descriptors. Chemical Biology and Drug Design, 2009, 73, 301-312.	1.5	17

#	Article	IF	CITATIONS
235	Simplified Molecular Input Line Entry Systemâ€Based Optimal Descriptors: Quantitative Structure–Activity Relationship Modeling Mutagenicity of Nitrated Polycyclic Aromatic Hydrocarbons. Chemical Biology and Drug Design, 2009, 73, 515-525.	1.5	22
236	QSPR modelling of the octanol/water partition coefficient of organometallic substances by optimal SMILES-based descriptors. Open Chemistry, 2009, 7, 846-856.	1.0	6
237	QSPR modeling of octanol/water partition coefficient for vitamins by optimal descriptors calculated with SMILES. European Journal of Medicinal Chemistry, 2008, 43, 714-740.	2.6	42
238	QSPR modeling for enthalpies of formation of organometallic compounds by means of SMILES-based optimal descriptors. Chemical Physics Letters, 2008, 461, 343-347.	1.2	30
239	QSPR modeling mineral crystal lattice energy by optimal descriptors of the graph of atomic orbitals. Chemical Physics Letters, 2006, 428, 183-186.	1.2	13
240	QSPR Modeling of Gibbs Free Energy of Organic Compounds by Weighting of Nearest Neighboring Codes. Structural Chemistry, 2005, 16, 305-324.	1.0	4
241	QSPR Modeling of Complex Stability by Correlation Weighing of the Topological and Chemical Invariants of Molecular Graphs. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 611-617.	0.3	11
242	Prediction of alkane enthalpies by means of correlation weighting of Morgan extended connectivity in molecular graphs. Chemical Physics Letters, 2004, 384, 357-363.	1.2	14
243	Nearest neighboring code and hydrogen bond index in labeled hydrogen-filled graph and graph of atomic orbitals: application to model of normal boiling points of haloalkanes. Computational and Theoretical Chemistry, 2004, 711, 173-183.	1.5	16
244	Comparison of QSAR models of anti-HIV-1 potencies based on labeled hydrogen filled graph and graph of atomic orbitals. Computational and Theoretical Chemistry, 2003, 640, 175-181.	1.5	10
245	QSPR modeling of alkanes properties based on graph of atomic orbitals. Computational and Theoretical Chemistry, 2003, 637, 1-10.	1.5	44
246	QSAR modeling of toxicity on optimization of correlation weights of Morgan extended connectivity. Computational and Theoretical Chemistry, 2002, 578, 129-134.	1.5	47
247	Modeling of acyclic carbonyl compounds normal boiling points by correlation weighting of nearest neighboring codes. Computational and Theoretical Chemistry, 2002, 581, 11-15.	1.5	37
248	Title is missing!. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2002, 28, 877-880.	0.3	15
249	Title is missing!. Journal of Structural Chemistry, 2001, 42, 1033-1035.	0.3	5
250	Modeling of lipophilicity by means of correlation weighting of local graph invariants. Computational and Theoretical Chemistry, 2001, 538, 197-199.	1.5	19
251	Prediction of heteroaromatic amine mutagenicity by means of correlation weighting of atomic orbital graphs of local invariants. Computational and Theoretical Chemistry, 2001, 538, 287-293.	1.5	54
252	3D weighting of molecular descriptors for QSPR/QSAR by the method of ideal symmetry (MIS). 1. Application to boiling points of alkanes. Computational and Theoretical Chemistry, 1998, 424, 237-247.	1.5	30

#	Article	IF	CITATIONS
253	Quantitative structure–activity relationship models for bee toxicity. Toxicological and Environmental Chemistry, 0, , 1-12.	0.6	2
254	CORAL: The dispersion of SWNTs in different organic solvents . , 0, , .		0