Gabriel B Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4403664/publications.pdf

Version: 2024-02-01

686830 794141 33 430 13 19 citations h-index g-index papers 43 43 43 502 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Equatorial Electronic Structure in the Uranyl Ion: Cs ₂ UO ₂ Cl ₄ and Cs ₂ UO ₂ Br ₄ . Inorganic Chemistry, 2022, 61, 3821-3831.	1.9	8
2	Optical Spectroscopic Investigation of Hexavalent Actinide Ions in n-Dodecane Solutions of Tri-butyl Phosphate. Solvent Extraction and Ion Exchange, 2021, 39, 56-73.	0.8	2
3	Cryo-TEM Characterization of the Early Stages of the Uranium Oxalate Growth Evolution. Microscopy and Microanalysis, 2021, 27, 1940-1941.	0.2	O
4	Sensor Fusion: Comprehensive Real-Time, On-Line Monitoring for Process Control via Visible, Near-Infrared, and Raman Spectroscopy. ACS Sensors, 2020, 5, 2467-2475.	4.0	23
5	Characterization of spent Purolite A530E resin with implications for long-term radioactive contaminant removal. Journal of Environmental Chemical Engineering, 2020, 8, 104155.	3.3	8
6	Spontaneous redox continuum reveals sequestered technetium clusters and retarded mineral transformation of iron. Communications Chemistry, 2020, 3, .	2.0	8
7	Unveiling the Early Stages of the F-element Oxalate Growth Evolution with Cryo-TEM. Microscopy and Microanalysis, 2020, 26, 642-644.	0.2	3
8	Identification and Quantification of Technetium Species in Hanford Waste Tank AN-102. Analytical Chemistry, 2020, 92, 13961-13970.	3.2	14
9	Evolution of Acid-Dependent Am ³⁺ and Eu ³⁺ Organic Coordination Environment: Effects on the Extraction Efficiency. Inorganic Chemistry, 2020, 59, 4453-4467.	1.9	19
10	Redox-Based Electrochemical Affinity Sensor for Detection of Aqueous Pertechnetate Anion. ACS Sensors, 2020, 5, 674-685.	4.0	6
11	Molar absorptivities of U(VI), U(IV), and Pu(III) in nitric acid solutions of various concentrations relevant to developing nuclear fuel recycling flowsheets. Journal of Radioanalytical and Nuclear Chemistry, 2020, 324, 773-789.	0.7	3
12	Overcoming Oxidation State-Dependent Spectral Interferences: Online Monitoring of U(VI) Reduction to U(IV) via Raman and UV–vis Spectroscopy. Industrial & Engineering Chemistry Research, 2020, 59, 8894-8901.	1.8	13
13	Simulant testing of a co-decontamination (CoDCon) flowsheet for a product with a controlled uranium-to-plutonium ratio. Separation Science and Technology, 2019, 54, 1977-1984.	1.3	23
14	Closing the Nuclear Fuel Cycle with a Simplified Minor Actinide Lanthanide Separation Process (ALSEP) and Additive Manufacturing. Scientific Reports, 2019, 9, 12842.	1.6	37
15	Inorganic Ba–Sn nanocomposite materials for sulfate sequestration from complex aqueous solutions. Environmental Science: Nano, 2018, 5, 890-903.	2.2	5
16	Surprising formation of quasi-stable Tc(<scp>vi</scp>) in high ionic strength alkaline media. Inorganic Chemistry Frontiers, 2018, 5, 2081-2091.	3.0	15
17	Extraction Behavior of Ln(III) Ions by T2EHDGA/ <i>n</i> -Dodecane from Nitric Acid and Sodium Nitrate Solutions. Solvent Extraction and Ion Exchange, 2018, 36, 331-346.	0.8	21
18	Spectroscopic Characterization of Aqua [<i>fac</i> -Tc(CO) ₃] ⁺ Complexes at High Ionic Strength. Inorganic Chemistry, 2018, 57, 6903-6912.	1.9	10

#	Article	IF	CITATIONS
19	An Advanced TALSPEAK Concept for Separating Minor Actinides. Part 1. Process Optimization and Flowsheet Development. Solvent Extraction and Ion Exchange, 2017, 35, 377-395.	0.8	26
20	Nitric Acid and Water Extraction by T2EHDGA in <i>n</i> -Dodecane. Solvent Extraction and Ion Exchange, 2017, 35, 586-603.	0.8	31
21	Neighboring π-Amide Participation in Thioether Oxidation: Conformational Control. Organic Letters, 2016, 18, 3522-3525.	2.4	4
22	Theoretical Modeling of ⁹⁹ Tc NMR Chemical Shifts. Inorganic Chemistry, 2016, 55, 8341-8347.	1.9	10
23	Correlative Microscopic, Spectroscopic, and Computational Analysis of the Nucleation and Growth of Europium (III) Oxalate Nanoparticles. Microscopy and Microanalysis, 2016, 22, 1396-1397.	0.2	0
24	Through space interaction between ferrocenes mediated by a thioether. Polyhedron, 2015, 86, 125-132.	1.0	5
25	Two organophosphorus pesticides: methyl parathion and dicapthon. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 975-977.	0.2	0
26	Intramolecular Electron Transfer in Bipyridinium Disulfides. Journal of the American Chemical Society, 2014, 136, 4012-4018.	6.6	40
27	Improved Synthesis of 10-(2-Alkylamino-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic Acid Derivatives Bearing Acid-Sensitive Linkers. Synthetic Communications, 2014, 44, 441-449.	1.1	6
28	Electrochemical, Spectroscopic, and Computational Study of Bis($\hat{l}\frac{1}{4}$ -methylthiolato)diironhexacarbonyl: Homoassociative Stabilization of the Dianion and a Chemically Reversible Reduction/Reoxidation Cycle. Organometallics, 2014, 33, 5009-5019.	1.1	21
29	Redox Chemistry of Noninnocent Quinones Annulated to 2Fe2S Cores. Organometallics, 2013, 32, 6605-6612.	1.1	19
30	Synthesis and characterization of [FeFe]-hydrogenase mimics appended with a 2-phenylazopyridine ligand. Journal of Sulfur Chemistry, 2013, 34, 566-579.	1.0	7
31	Rational Design of Rhodium Complexes Featuring îº ⁴ â€ <i>N</i> , <i< td=""><td>1.0</td><td>23</td></i<>	1.0	23
32	tert-Butyl 4-(3,4-dichloroanilino)piperidine-1-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o205-o205.	0.2	1
33	3-(4-Bromophenyl)-1-butyl-5-[1-(2-chloro-6-methylphenyl)-1H-tetrazol-5-yl]imidazolidine-2,4-dione. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o1102-o1103.	0.2	0