Antonio Jacinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4403585/publications.pdf

Version: 2024-02-01

73 papers 5,440 citations

36 h-index 70 g-index

82 all docs 82 docs citations

times ranked

82

5651 citing authors

#	Article	IF	CITATIONS
1	Urinary immune cell phenotype of severe AKI in critically ill patients. International Urology and Nephrology, 2022, 54, 2047-2055.	1.4	1
2	A Dietary Cholesterol-Based Intestinal Inflammation Assay for Improving Drug-Discovery on Inflammatory Bowel Diseases. Frontiers in Cell and Developmental Biology, 2021, 9, 674749.	3.7	5
3	Targeting senescent cells improves functional recovery after spinal cord injury. Cell Reports, 2021, 36, 109334.	6.4	36
4	Expression of HLA-DR in Cytotoxic T Lymphocytes: A Validated Predictive Biomarker and a Potential Therapeutic Strategy in Breast Cancer. Cancers, 2021, 13, 3841.	3.7	9
5	Yap Regulates Mýller Glia Reprogramming in Damaged Zebrafish Retinas. Frontiers in Cell and Developmental Biology, 2021, 9, 667796.	3.7	10
6	The right time for senescence. ELife, 2021, 10, .	6.0	56
7	Circulating low density neutrophils of breast cancer patients are associated with their worse prognosis due to the impairment of T cell responses. Oncotarget, 2021, 12, 2388-2403.	1.8	19
8	theLiTEâ,, ¢: A Screening Platform to Identify Compounds that Reinforce Tight Junctions. Frontiers in Pharmacology, 2021, 12, 752787.	3.5	1
9	A Bird's Eye View on the Origin of Aortic Hemogenic Endothelial Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 605274.	3.7	0
10	Establishment of a 3D Co-culture With MDA-MB-231 Breast Cancer Cell Line and Patient-Derived Immune Cells for Application in the Development of Immunotherapies. Frontiers in Oncology, 2020, 10, 1543.	2.8	40
11	Drp1-mediated mitochondrial fission regulates calcium and F-actin dynamics during wound healing. Biology Open, 2020, 9, .	1.2	22
12	The Henna pigment Lawsone activates the Aryl Hydrocarbon Receptor and impacts skin homeostasis. Scientific Reports, 2019, 9, 10878.	3.3	17
13	Yap induces osteoblast differentiation by modulating Bmp signalling during zebrafish caudal fin regeneration. Journal of Cell Science, 2019, 132, .	2.0	18
14	Renal regeneration after acute kidney injury. Nephrology, 2018, 23, 805-814.	1.6	20
15	HLA-DR in Cytotoxic T Lymphocytes Predicts Breast Cancer Patients' Response to Neoadjuvant Chemotherapy. Frontiers in Immunology, 2018, 9, 2605.	4.8	57
16	Occluding junctions as novel regulators of tissue mechanics during wound repair. Journal of Cell Biology, 2018, 217, 4267-4283.	5.2	19
17	Identification of Novel Hemangioblast Genes in the Early Chick Embryo. Cells, 2018, 7, 9.	4.1	4
18	Novel role for Grainy head in the regulation of cytoskeletal and junctional dynamics during epithelial repair. Journal of Cell Science, 2018, 131, .	2.0	2

#	Article	IF	Citations
19	Trends in tissue repair and regeneration. Development (Cambridge), 2017, 144, 357-364.	2.5	62
20	How many diseases is triple negative breast cancer: the protagonism of the immune microenvironment. ESMO Open, 2017, 2, e000208.	4.5	47
21	Cholesteryl hemiesters alter lysosome structure and function and induce proinflammatory cytokine production in macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 210-220.	2.4	11
22	Plexins function in epithelial repair in both Drosophila and zebrafish. Nature Communications, 2016, 7, 12282.	12.8	40
23	Yap control of tissue growth relies on cell density and F-actin in zebrafish fin regeneration. Development (Cambridge), 2015, 142, 2752-63.	2.5	50
24	Gap geometry dictates epithelial closure efficiency. Nature Communications, 2015, 6, 7683.	12.8	118
25	Integrin Adhesions Suppress Syncytium Formation in the Drosophila Larval Epidermis. Current Biology, 2015, 25, 2215-2227.	3.9	32
26	Control of tissue growth by Yap relies on cell density and F-actin in zebrafish fin regeneration. Journal of Cell Science, 2015, 128, e1.2-e1.2.	2.0	2
27	Genetic Variants Underlying Risk of Intracranial Aneurysms: Insights from a GWAS in Portugal. PLoS ONE, 2015, 10, e0133422.	2.5	13
28	The Toll/NF-κB signaling pathway is required for epidermal wound repair in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5373-82.	7.1	47
29	Denervation impairs regeneration of amputated zebrafish fins. BMC Developmental Biology, 2014, 14, 49.	2.1	58
30	V-ATPase Proton Pumping Activity Is Required for Adult Zebrafish Appendage Regeneration. PLoS ONE, 2014, 9, e92594.	2.5	33
31	The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nature Reviews Molecular Cell Biology, 2013, 14, 249-262.	37.0	217
32	<i>Drosophila</i> integrin adhesion complexes are essential for hemocyte migration in vivo. Biology Open, 2013, 2, 795-801.	1.2	39
33	Steroid Hormone Signaling Is Essential to Regulate Innate Immune Cells and Fight Bacterial Infection in Drosophila. PLoS Pathogens, 2013, 9, e1003720.	4.7	102
34	Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding. Journal of Cell Biology, 2013, 202, 365-379.	5 . 2	125
35	Drosophila Host Model Reveals New Enterococcus faecalis Quorum-Sensing Associated Virulence Factors. PLoS ONE, 2013, 8, e64740.	2 . 5	30
36	Telomerase Is Required for Zebrafish Lifespan. PLoS Genetics, 2013, 9, e1003214.	3.5	107

#	Article	IF	CITATIONS
37	The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nature Reviews Molecular Cell Biology, 2013, 14, 249-62.	37.0	26
38	A new zebrafish bone crush injury model. Biology Open, 2012, 1, 915-921.	1.2	45
39	The Drosophila larva as a tool to study gut-associated macrophages: PI3K regulates a discrete hemocyte population at the proventriculus. Developmental and Comparative Immunology, 2012, 36, 638-647.	2.3	32
40	An amputation resets positional information to a proximal identity in the regenerating zebrafish caudal fin. BMC Developmental Biology, 2012, 12, 24.	2.1	23
41	In Vivo Cell and Tissue Dynamics Underlying Zebrafish Fin Fold Regeneration. PLoS ONE, 2012, 7, e51766.	2.5	47
42	Drosophila Hemocyte Migration: An In Vivo Assay for Directional Cell Migration. Methods in Molecular Biology, 2011, 769, 249-260.	0.9	22
43	The Regenerative Capacity of the Zebrafish Caudal Fin Is Not Affected by Repeated Amputations. PLoS ONE, 2011, 6, e22820.	2.5	98
44	Differentiated skeletal cells contribute to blastema formation during zebrafish fin regeneration. Development (Cambridge), 2011, 138, 3897-3905.	2.5	133
45	DRhoGEF2 Regulates Cellular Tension and Cell Pulsations in the Amnioserosa during Drosophila Dorsal Closure. PLoS ONE, 2011, 6, e23964.	2.5	44
46	Hole-in-One Mutant Phenotypes Link EGFR/ERK Signaling to Epithelial Tissue Repair in Drosophila. PLoS ONE, 2011, 6, e28349.	2.5	22
47	Genetic Screen in <i>Drosophila melanogaster</i> Uncovers a Novel Set of Genes Required for Embryonic Epithelial Repair. Genetics, 2010, 184, 129-140.	2.9	66
48	Video force microscopy reveals the mechanics of ventral furrow invagination in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22111-22116.	7.1	155
49	03-P031 Searching Drosophila for new genes involved in wound healing. Mechanisms of Development, 2009, 126, S76.	1.7	0
50	Epithelial resealing. International Journal of Developmental Biology, 2009, 53, 1549-1556.	0.6	35
51	Dpp signalling orchestrates dorsal closure by regulating cell shape changes both in the amnioserosa and in the epidermis. Mechanisms of Development, 2007, 124, 884-897.	1.7	82
52	Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nature Reviews Molecular Cell Biology, 2007, 8, 542-551.	37.0	156
53	Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in <i>Drosophila melanogaster </i> . Journal of Cell Biology, 2006, 173, 405-416.	5.2	186
54	Compartmentalisation of Rho regulators directs cell invagination during tissue morphogenesis. Development (Cambridge), 2006, 133, 4257-4267.	2.5	96

#	Article	IF	CITATIONS
55	Coordinated Control of Cell Adhesion, Polarity, and Cytoskeleton Underlies Hox-Induced Organogenesis in Drosophila. Current Biology, 2006, 16, 2206-2216.	3.9	88
56	Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila. Development (Cambridge), 2006, 133, 2671-2681.	2.5	144
57	Imaging Cell Movement During Dorsal Closure in <1>Drosophila 1 Embryos., 2005, 294, 203-210.		12
58	The Cadherin Superfamily in Anopheles gambiae: a Comparative Study With Drosophila melanogaster. Comparative and Functional Genomics, 2005, 6, 204-216.	2.0	4
59	Live imaging of wound inflammation in <i>Drosophila</i> embryos reveals key roles for small GTPases during in vivo cell migration. Journal of Cell Biology, 2005, 168, 567-573.	5 . 2	283
60	The small GTPase Rac plays multiple roles in epithelial sheet fusionâ€"dynamic studies of Drosophila dorsal closure. Developmental Biology, 2005, 282, 163-173.	2.0	76
61	Actin in development. Mechanisms of Development, 2003, 120, 1337-1349.	1.7	36
62	Dynamic Analysis of Dorsal Closure in Drosophila. Developmental Cell, 2002, 3, 9-19.	7.0	221
63	Dynamic Analysis of Actin Cable Function during Drosophila Dorsal Closure. Current Biology, 2002, 12, 1245-1250.	3.9	191
64	Wound healing recapitulates morphogenesis in Drosophila embryos. Nature Cell Biology, 2002, 4, 907-912.	10.3	388
65	Planar polarity and actin dynamics in the epidermis of Drosophila. Nature Cell Biology, 2002, 4, 937-944.	10.3	109
66	Mechanisms of epithelial fusion and repair. Nature Cell Biology, 2001, 3, E117-E123.	10.3	350
67	Filopodia. Current Biology, 2001, 11, R634.	3.9	27
68	Morphogenesis: Unravelling the cell biology of hole closure. Current Biology, 2001, 11, R705-R707.	3.9	26
69	Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Current Biology, 2000, 10, 1420-1426.	3.9	311
70	Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins Genes and Development, 1996, 10, 2003-2013.	5.9	345
71	Secretion of the amino-terminal fragment of the Hedgehog protein is necessary and sufficient for hedgehog signalling in Drosophila. Current Biology, 1995, 5, 643-650.	3.9	74
72	Hedgehog Signalling in Drosophila and Vertebrate Development. Animal Biology, 1995, 46, 97-114.	0.4	0

Antonio Jacinto

#	Article	IF	CITATIONS
73	Cloning and characterization of two ubiquitin::79-amino-acid extension protein-encoding fusion genes from Lupinus albus. Gene, 1994, 139, 201-205.	2.2	5