Philippe Boucaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4403238/publications.pdf

Version: 2024-02-01

264 papers 6,427 citations

46984 47 h-index 95218 68 g-index

264 all docs

264 docs citations

times ranked

264

3476 citing authors

#	Article	IF	CITATIONS
1	Up to 300â€K lasing with GeSn-On-Insulator microdisk resonators. Optics Express, 2022, 30, 3954.	1.7	16
2	Influence of surface roughness on the lasing characteristics of optically pumped thin-film GaN microdisks. Optics Letters, 2022, 47, 1521.	1.7	7
3	Low-loss GaN-on-insulator platform for integrated photonics. Optics Express, 2022, 30, 20737.	1.7	8
4	Comparison of lasing characteristics of GaN microdisks with different structures. Journal Physics D: Applied Physics, 2022, 55, 355107.	1.3	2
5	GeSnOI mid-infrared laser technology. Light: Science and Applications, 2021, 10, 232.	7.7	18
6	Analysis of low-threshold optically pumped III-nitride microdisk lasers. Applied Physics Letters, 2020, 117, .	1.5	14
7	Reduced Lasing Thresholds in GeSn Microdisk Cavities with Defect Management of the Optically Active Region. ACS Photonics, 2020, 7, 2713-2722.	3.2	42
8	Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys. Nature Photonics, 2020, 14, 375-382.	15.6	145
9	Monolithic integration of ultraviolet microdisk lasers into photonic circuits in a III-nitride-on-silicon platform. Optics Letters, 2020, 45, 4276.	1.7	13
10	Impact of tensile strain on low Sn content GeSn lasing. Scientific Reports, 2019, 9, 259.	1.6	49
10	Impact of tensile strain on low Sn content GeSn lasing. Scientific Reports, 2019, 9, 259. Enhanced Tensile Strain in P-doped Ge Films Grown by Molecular Beam Epitaxy Using GaP and Sb Solid Sources. Journal of Electronic Materials, 2019, 48, 4674-4678.	1.6	49
	Enhanced Tensile Strain in P-doped Ge Films Grown by Molecular Beam Epitaxy Using GaP and Sb Solid		
11	Enhanced Tensile Strain in P-doped Ge Films Grown by Molecular Beam Epitaxy Using GaP and Sb Solid Sources. Journal of Electronic Materials, 2019, 48, 4674-4678. The efficiency of carbon adsorption as a diffusion barrier in Ge/Si heterostructures. Physica Scripta,	1.0	2
11 12	Enhanced Tensile Strain in P-doped Ge Films Grown by Molecular Beam Epitaxy Using GaP and Sb Solid Sources. Journal of Electronic Materials, 2019, 48, 4674-4678. The efficiency of carbon adsorption as a diffusion barrier in Ge/Si heterostructures. Physica Scripta, 2019, 94, 085803. Demonstration of critical coupling in an active III-nitride microdisk photonic circuit on silicon.	1.0	2
11 12 13	Enhanced Tensile Strain in P-doped Ge Films Grown by Molecular Beam Epitaxy Using GaP and Sb Solid Sources. Journal of Electronic Materials, 2019, 48, 4674-4678. The efficiency of carbon adsorption as a diffusion barrier in Ge/Si heterostructures. Physica Scripta, 2019, 94, 085803. Demonstration of critical coupling in an active Ill-nitride microdisk photonic circuit on silicon. Scientific Reports, 2019, 9, 18095. Ill-nitride on silicon electrically injected microrings for nanophotonic circuits. Optics Express, 2019,	1.0 1.2 1.6	2 2 11
11 12 13 14	Enhanced Tensile Strain in P-doped Ge Films Grown by Molecular Beam Epitaxy Using GaP and Sb Solid Sources. Journal of Electronic Materials, 2019, 48, 4674-4678. The efficiency of carbon adsorption as a diffusion barrier in Ge/Si heterostructures. Physica Scripta, 2019, 94, 085803. Demonstration of critical coupling in an active Ill-nitride microdisk photonic circuit on silicon. Scientific Reports, 2019, 9, 18095. Ill-nitride on silicon electrically injected microrings for nanophotonic circuits. Optics Express, 2019, 27, 11800.	1.0 1.2 1.6	2 2 11 20
11 12 13 14	Enhanced Tensile Strain in P-doped Ge Films Grown by Molecular Beam Epitaxy Using GaP and Sb Solid Sources. Journal of Electronic Materials, 2019, 48, 4674-4678. The efficiency of carbon adsorption as a diffusion barrier in Ge/Si heterostructures. Physica Scripta, 2019, 94, 085803. Demonstration of critical coupling in an active Ill-nitride microdisk photonic circuit on silicon. Scientific Reports, 2019, 9, 18095. Ill-nitride on silicon electrically injected microrings for nanophotonic circuits. Optics Express, 2019, 27, 11800. Towards Ill-nitride on silicon active photonic circuits. , 2019, , . Nonlinearities in GaAs cavities with high CW input powers enabled by photo-oxidation quenching	1.0 1.2 1.6 1.7	2 2 11 20 0

#	Article	IF	CITATIONS
19	Solving thermal issues in tensile-strained Ge microdisks. Optics Express, 2018, 26, 28376.	1.7	6
20	III-Nitride on silicon photonic circuits. , 2017, , .		O
21	Q factor limitation at short wavelength (around 300 nm) in III-nitride-on-silicon photonic crystal cavities. Applied Physics Letters, 2017, 111, 131103.	1.5	7
22	Laser damage of free-standing nanometer membranes. Journal of Applied Physics, 2017, 122, 215303.	1.1	6
23	Efficient second harmonic generation in low-loss planar GaN waveguides. Optics Express, 2017, 25, 23035.	1.7	20
24	Phase-Matched Second Harmonic Generation With On-Chip GaN-On-Si Microdisks., 2017,,.		0
25	Phase-matched second harmonic generation with on-chip GaN-on-Si microdisks. Scientific Reports, 2016, 6, 34191.	1.6	58
26	Direct band gap germanium in high Q-factor cavities. , 2016, , .		0
27	III-Nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet. Applied Physics Letters, 2016, 109, .	1.5	38
28	(Invited) Direct Band Gap Germanium. ECS Transactions, 2016, 75, 177-184.	0.3	1
29	Near-infrared III-nitride-on-silicon nanophotonic platform with microdisk resonators. Optics Express, 2016, 24, 9602.	1.7	23
30	Deep-UV nitride-on-silicon microdisk lasers. Scientific Reports, 2016, 6, 21650.	1.6	57
31	Tensile-strained germanium microdisks with circular Bragg reflectors. Applied Physics Letters, 2016, 108, .	1.5	20
32	Imaging of Photonic Crystal Localized Modes through Third-Harmonic Generation. ACS Photonics, 2016, 3, 1240-1247.	3.2	14
33	Direct Band Gap Germanium Microdisks Obtained with Silicon Nitride Stressor Layers. ACS Photonics, 2016, 3, 443-448.	3.2	54
34	Surface-sensitive diamond photonic crystals for high-performance gas detection. Optics Letters, 2016, 41, 4360.	1.7	15
35	(Invited) Direct Band Gap Germanium. ECS Meeting Abstracts, 2016, , .	0.0	0
36	Analysis of optical gain threshold in n-doped and tensile-strained germanium heterostructure diodes. Journal of Applied Physics, 2015, 118, 125704.	1.1	12

#	Article	IF	Citations
37	Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon. Applied Physics Letters, 2015, 106, .	1.5	23
38	Allâ€Around SiN Stressor for High and Homogeneous Tensile Strain in Germanium Microdisk Cavities. Advanced Optical Materials, 2015, 3, 353-358.	3.6	72
39	Making germanium, an indirect band gap semiconductor, suitable for light-emitting devices. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 015013.	0.7	12
40	Tensile-strained germanium microdisk electroluminescence. Optics Express, 2015, 23, 6722.	1.7	20
41	High-performance and power-efficient $2\tilde{A}$ —2 optical switch on Silicon-on-Insulator. Optics Express, 2015, 23, 24163.	1.7	12
42	Room Temperature UV-C Lasers with Nitride Microdisks on Silicon. , 2015, , .		0
43	Second Harmonic Generation In a GaN Photonic Crystal Cavity on Silicon. , 2015, , .		O
44	Electroluminescent diodes in n-doped germanium with Schottky contacts. , 2014, , .		0
45	Strain engineering in germanium microdisks. , 2014, , .		4
46	Effective thermal resistance of a photonic crystal microcavity. Optics Letters, 2014, 39, 458.	1.7	2
47	Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon. Applied Physics Letters, 2014, 105, .	1.5	33
48	Schottky electroluminescent diodes with n-doped germanium. Applied Physics Letters, 2014, 104, .	1.5	8
49	Aluminum nitride photonic crystals and microdiscs for ultra-violet nanophotonics. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2014, 5, 023001.	0.7	14
50	Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. Optics Express, 2014, 22, 399.	1.7	96
51	Highly-Doped, Highly-Strained Germanium and Schottky Electroluminescent Diodes. ECS Transactions, 2014, 64, 359-364.	0.3	O
52	CMOS-fabricated tensile Ge microstructures: towards an edge-emitting laser. , 2014, , .		1
53	Molecular-beam epitaxial growth of tensile-strained and n-doped Ge/Si(001) films using a GaP decomposition source. Thin Solid Films, 2014, 557, 70-75.	0.8	22
54	High tensile strain transfer into germanium microdisks using all-around strained SiN. , 2014, , .		0

#	Article	IF	Citations
55	Control of tensile strain and interdiffusion in Ge/Si(001) epilayers grown by molecular-beam epitaxy. Journal of Applied Physics, 2013, 114, .	1.1	58
56	Effect of increasing thickness on tensile-strained germanium grown on InGaAs buffer layers. Journal of Applied Physics, 2013, 113, 183508.	1.1	19
57	Light emission from strained germanium. Nature Photonics, 2013, 7, 162-162.	15.6	22
58	Optical Analysis of pâ€Type Surface Conductivity in Diamond with Slotted Photonic Crystals. Advanced Optical Materials, 2013, 1, 963-970.	3.6	10
59	High-frequency self-induced oscillations in a silicon photonic crystal cavity. , 2013, , .		0
60	Imaging of photonic modes in an AlN-based photonic crystal probed by an ultra-violet internal light source. Optics Letters, 2013, 38, 5059.	1.7	4
61	High-frequency self-induced oscillations in a silicon nanocavity. Optics Express, 2013, 21, 13626.	1.7	27
62	Recent advances in germanium emission [Invited]. Photonics Research, 2013, 1, 102.	3.4	76
63	Tensile-strained germanium microdisks. Applied Physics Letters, 2013, 102, 221112.	1.5	75
64	(Invited) Strain Engineering for Optical Gain in Germanium. ECS Transactions, 2013, 50, 363-370.	0.3	4
65	Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities. Optics Express, 2013, 21, 10324.	1.7	19
66	Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach. Journal of Applied Physics, 2013, 113, .	1.1	82
67	High quality factor AlN nanocavities embedded in a photonic crystal waveguide. Applied Physics Letters, 2012, 100, 191104.	1.5	29
68	Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities. Applied Physics Letters, 2012, 101, .	1.5	38
69	Control of tensile strain in germanium waveguides through silicon nitride layers. Applied Physics Letters, 2012, 100, 201104.	1.5	54
70	Tensile Strained Ge Layers Obtained via a Si-CMOS Compatible Approach., 2012,,.		2
71	High quality factor photonic resonators for nitride quantum dots. Physica Status Solidi (B): Basic Research, 2012, 249, 449-454.	0.7	7
72	High quality tensile-strained n-doped germanium thin films grown on InGaAs buffer layers by metal-organic chemical vapor deposition. Applied Physics Letters, 2011, 98, .	1.5	58

#	Article	IF	Citations
73	Optical gain in single tensile-strained germanium photonic wire. Optics Express, 2011, 19, 17925.	1.7	83
74	High quality factor in a two-dimensional photonic crystal cavity on silicon-on-insulator. Optics Letters, 2011, 36, 1749.	1.7	18
75	High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al(Ga)N quantum dots. Optics Letters, 2011, 36, 2203.	1.7	54
76	High quality factor of AlN microdisks embedding GaN quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2328-2330.	0.8	0
77	display="inline"> <mml:mrow><mml:mi>S</mml:mi></mml:mrow> to <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>P</mml:mi></mml:mrow></mml:mrow></mml:math> transition in InGaAs/GaAs quantum dots measured by infrared absorption imaging with nanoscale resolution. Physical Review B.	1.1	22
78	AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate. Applied Physics Letters, 2011, 98, 261106.	1.5	32
79	GaN quantum dots in (Al,Ga)N-based Microdisks. Journal of Physics: Conference Series, 2010, 210, 012005.	0.3	8
80	Optimized design for 2 \tilde{A} — 106 ultra-high Q silicon photonic crystal cavities. Optics Communications, 2010, 283, 4387-4391.	1.0	31
81	Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation. Physical Review B, 2010, 82, .	1.1	32
82	Deterministic measurement of the Purcell factor in microcavities through Raman emission. Physical Review A, 2010, 81 , .	1.0	23
83	Interference effects on bound-to-continuum quantum dot absorption. Journal of Applied Physics, 2010, 107, 083102.	1.1	7
84	Control of direct band gap emission of bulk germanium by mechanical tensile strain. Applied Physics Letters, 2010, 96, .	1.5	129
85	All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength. Optics Express, 2010, 18, 23965.	1.7	20
86	Band structure and optical gain of tensile-strained germanium based on a 30 band kâ‹p formalism. Journal of Applied Physics, 2010, 107, .	1.1	197
87	All-silicon telecom wavelength detector fabricated on silicon-on-insulator. , 2010, , .		1
88	Direct and indirect band gap room temperature electroluminescence of Ge diodes. Journal of Applied Physics, 2010, 108, 023105.	1.1	51
89	Mechanical tensile strain engineering of Ge for gain achievement. , 2010, , .		0
90	Resonant coupling of quantum dot intersublevel transitions with midinfrared photonic crystal modes. Applied Physics Letters, 2009, 95, 041108.	1.5	7

#	Article	IF	Citations
91	Twoâ€dimensional photonic crystals for midâ€infrared quantum dot intersublevel emission. Physica Status Solidi (B): Basic Research, 2009, 246, 816-819.	0.7	0
92	Enhanced spontaneous Raman scattering in silicon photonic crystal waveguides on insulator. Optics Express, 2009, 17, 3500.	1.7	22
93	Midinfrared absorption measured at a \hat{l} »/400 resolution with an atomic force microscope. Optics Express, 2009, 17, 10887.	1.7	28
94	Enhanced photoluminescence of heavily n-doped germanium. Applied Physics Letters, 2009, 94, .	1.5	109
95	Tensile-strain and n-type doping of germanium-on-insulator: Towards a Ge laser., 2009,,.		0
96	Two-dimensional photonic crystals with pure germanium-on-insulator. Optics Communications, 2008, 281, 846-850.	1.0	35
97	Intersublevel transitions in self-assembled quantum dots. Comptes Rendus Physique, 2008, 9, 840-849.	0.3	14
98	Germanium-based nanophotonic devices: Two-dimensional photonic crystals and cavities. Thin Solid Films, 2008, 517, 121-124.	0.8	15
99	Quality factor of Si-based photonic crystal L3 nanocavities probed with an internal source. Optics Express, 2008, 16, 8780.	1.7	49
100	Two-dimensional photonic crystals with large complete photonic band gaps in both TE and TM polarizations. Optics Express, 2008, 16, 12278.	1.7	73
101	GeOI photonic crystal cavities probed by room-temperature photoluminescence., 2008,,.		1
102	Ultrafast resonant terahertz response of excitons in semiconductor quantum dots. Physical Review B, 2008, 77, .	1.1	10
103	Metal organic vapor phase epitaxy of InAsP/InP(001) quantum dots for 1.55μm applications: Growth, structural, and optical properties. Journal of Applied Physics, 2008, 104, 043504.	1.1	27
104	Two-dimensional photonic crystals with germanium on insulator obtained by a condensation method. Applied Physics Letters, 2008, 93, .	1.5	24
105	Thermal emission of midinfrared GaAs photonic crystals. Physical Review B, 2008, 78, .	1.1	9
106	Ultraweak-Absorption Microscopy of a Single Semiconductor Quantum Dot in the Midinfrared Range. Physical Review Letters, 2007, 99, 217404.	2.9	44
107	High-quality factor photonic crystal nanocavities probed with SiGe/Si self-assembled islands., 2007,,.		1
108	Two-Dimensional Photonic Crystals Coupled to One-Dimensional Bragg Mirrors. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1534-1538.	1.9	1

#	Article	IF	Citations
109	Band-edge alignment of SiGeâ^•Siquantum wells and SiGeâ^•Siself-assembled islands. Physical Review B, 2006, 73, .	1.1	73
110	Effect of thermal annealing on the optical properties of self-assembled Ge/Si quantum dots. European Physical Journal Special Topics, 2006, 132, 163-170.	0.2	2
111	Towards a mid-infrared polaron laser using InAs/GaAs self-assembled quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 3895-3899.	0.7	0
112	Si-based two-dimensional photonic crystals coupled to one-dimensional Bragg mirrors. Journal of Luminescence, 2006, 121, 286-289.	1.5	0
113	Influence of point defects on the optical properties of self-assembled Ge/Si hut clusters. Thin Solid Films, 2006, 508, 207-212.	0.8	5
114	Ge/Si self-assembled Islands for Photonics Applications. Materials Research Society Symposia Proceedings, 2006, 958, 1.	0.1	0
115	Intersublevel polaron laser with InAsâ^•GaAs self-assembled quantum dots. Applied Physics Letters, 2006, 88, 063106.	1.5	16
116	Quality factor control of Si-based two-dimensional photonic crystals with a Bragg mirror. Applied Physics Letters, 2006, 88, 091122.	1.5	16
117	Probing photonic crystals on silicon-on-insulator with Geâ^•Si self-assembled islands as an internal source. Journal of Applied Physics, 2006, 99, 023103.	1.1	30
118	Tailoring holes for improving the efficiency of single-mode photonic crystal waveguide lasers on InP substrate. Applied Physics Letters, 2006, 89, 071108.	1.5	2
119	Ge islands and photonic crystals for Si-based photonics. Optical Materials, 2005, 27, 792-798.	1.7	10
120	Role of point defects on the optical properties of self-assembled Ge/Si hut clusters. Journal of Crystal Growth, 2005, 275, e1287-e1294.	0.7	0
121	Pump–probe analysis of polaron decay in InAs/GaAs self-assembled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 59-62.	1.3	9
122	Distributed feedback-like laser emission in photonic crystal waveguides on InP substrate. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 1180-1186.	1.9	10
123	Fast decoherence of slowly relaxing polarons in semiconductor InAs quantum dots. Europhysics Letters, 2005, 70, 390-396.	0.7	7
124	Electroabsorption spectroscopy of Geâ^•Si self-assembled islands. Journal of Applied Physics, 2005, 97, 083525.	1,1	1
125	Mid-infrared intersublevel absorption of vertically electronically coupled InAs quantum dots. Applied Physics Letters, 2005, 87, 173113.	1.5	21
126	Pump–probe analysis of polaron decay in InAs/GaAs self-assembled quantum dots. Semiconductor Science and Technology, 2005, 20, L10-L13.	1.0	0

#	Article	IF	CITATIONS
127	1.5μm room-temperature emission of square-lattice photonic-crystal waveguide lasers with a single line defect. Applied Physics Letters, 2005, 86, 151111.	1.5	11
128	Strong 1.3–1.5 μm luminescence from Ge/Si self-assembled islands in highly confining microcavities on silicon on insulator. Journal of Applied Physics, 2004, 96, 997-1000.	1.1	22
129	Ge/Si self-assembled islands integrated in 2D photonic crystals microcavities for realisation of silicon-based light-emitting devices. , 2004, 5450, 369.		9
130	Formation and properties of selectively grown Ge/Si quantum dots. Superlattices and Microstructures, 2004, 36, 193-199.	1.4	1
131	Engineering strained silicon on insulator wafers with the Smart CutTM technology. Solid-State Electronics, 2004, 48, 1285-1296.	0.8	106
132	Distributed feedback regime of photonic crystal waveguide lasers at 1.5μm. Applied Physics Letters, 2004, 85, 5502-5504.	1.5	10
133	Photoluminescence of a tensilely strained silicon quantum well on a relaxed SiGe buffer layer. Applied Physics Letters, 2004, 85, 46-48.	1.5	13
134	Infrared photodetection with semiconductor self-assembled quantum dots. Comptes Rendus Physique, 2003, 4, 1133-1154.	0.3	61
135	Non-linear infrared properties of InAs/GaAs self-assembled quantum dots. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 507, 569-571.	0.7	0
136	Photoconductivity of Ge/Si quantum dot photodetectors. Infrared Physics and Technology, 2003, 44, 513-516.	1.3	11
137	Electromodulation of the interband and intraband absorption of Ge/Si self-assembled islands. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 450-454.	1.3	7
138	Silicon-on-insulator and SiGe waveguide photodetectors with Ge/Si self-assembled islands. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 523-527.	1.3	14
139	Polaron relaxation in InAs/GaAs self-assembled quantum dots. Physica Status Solidi (B): Basic Research, 2003, 238, 254-257.	0.7	3
140	Comparison between 6-band and 14-bandkâ«pformalisms in SiGe/Si heterostructures. Physical Review B, 2003, 68, .	1.1	32
141	Two-dimensional photonic crystals with Ge/Si self-assembled islands. Applied Physics Letters, 2003, 83, 2509-2511.	1.5	54
142	Room temperature 1.3–1.55 μm laser-like emission from Ge/Si self-assembled islands in Si-based photonic crystals. Materials Research Society Symposia Proceedings, 2003, 797, 167.	0.1	0
143	Non-linear infrared properties of InAs/GaAs self-assembled quantum dots., 2003,, 569-571.		0
144	Silicon–on–insulator waveguide photodetector with Ge/Si self-assembled islands. Journal of Applied Physics, 2002, 92, 1858-1861.	1.1	25

#	Article	IF	CITATIONS
145	Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots. Physical Review B, 2002, 66, .	1.1	17
146	Temperature dependence of the absorption saturation relaxation time in light- and heavy-ion-irradiated bulk GaAs. Applied Physics Letters, 2002, 80, 4711-4713.	1.5	18
147	Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots. Applied Physics Letters, 2002, 80, 509-511.	1.5	7 2
148	Vertical ordering in multilayers of self-assembled Ge/Si(001) quantum dots. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1259.	1.6	12
149	Long Polaron Lifetime in InAs/GaAs Self-Assembled Quantum Dots. Physical Review Letters, 2002, 88, 177402.	2.9	119
150	Temperature dependence of intersublevel absorption in InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 2002, 80, 4620-4622.	1.5	51
151	Kinetics of the heteroepitaxial growth of Ge on Si(001). Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 1251.	1.6	15
152	Aspects of Ge/Si self-assembled quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 89, 36-44.	1.7	13
153	Photoluminescence study of a bimodal size distribution of Ge/Si(001) quantum dots. Physical Review B, 2001, 63, .	1.1	33
154	Optical recombination from excited states in Ge/Si self-assembled quantum dots. Physical Review B, 2001, 64, .	1.1	51
155	Midinfrared Photoconductivity in Ge/Si Self-Assembled Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 233-236.	0.7	9
156	Terahertz-Frequency Intraband Absorption in Semiconductor Quantum Dot Molecules. Physica Status Solidi (B): Basic Research, 2001, 224, 443-446.	0.7	1
157	Intersublevel Emission in InAs/GaAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 579-583.	0.7	1
158	Mid-Infrared Second-Order Nonlinear Susceptibility in InAs/GaAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 595-598.	0.7	2
159	Second-harmonic generation resonant withs-ptransition in InAs/GaAs self-assembled quantum dots. Physical Review B, 2001, 63, .	1.1	56
160	Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 2001, 78, 2327-2329.	1.5	78
161	Midinfrared Photoconductivity in Ge/Si Self-Assembled Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 233-236.	0.7	1
162	Strain-driven modification of the Ge/Si growth mode in stacked layers: a way to produce Ge islands having equal size in all layers. Thin Solid Films, 2000, 369, 43-48.	0.8	31

#	Article	IF	CITATIONS
163	Effect of the bimodal size distribution on the optical properties of self-assembled Ge/Si(001) quantum dots. Thin Solid Films, 2000, 380, 78-81.	0.8	13
164	Second-harmonic generation in InAs/GaAs self-assembled quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 155-158.	1.3	3
165	Heterostructures of pseudomorphic Ge[sub 1â^'y]C[sub y] and Ge[sub 1â^'xâ^'y]Si[sub x]C[sub y] alloys grown on Ge (001) substrates. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1728.	1.6	8
166	Saturation of THz-frequency intraband absorption in InAs/GaAs quantum dot molecules. Applied Physics Letters, 2000, 77, 510-512.	1.5	25
167	Midinfrared photoconductivity of Ge/Si self-assembled quantum dots. Applied Physics Letters, 2000, 77, 3224-3226.	1.5	57
168	Infrared second-order optical susceptibility in InAs/GaAs self-assembled quantum dots. Physical Review B, 2000, 61, 5562-5570.	1.1	74
169	Electroluminescence of composite channel InAlAs/InGaAs/InP/InAlAs high electron mobility transistor. Journal of Applied Physics, 2000, 87, 2548-2552.	1.1	7
170	Electroluminescence of Ge/Si self-assembled quantum dots grown by chemical vapor deposition. Applied Physics Letters, 2000, 77, 1822.	1.5	65
171	Strain and composition of capped Ge/Si self-assembled quantum dots grown by chemical vapor deposition. Applied Physics Letters, 2000, 77, 370-372.	1.5	35
172	Terahertz-frequency electronic coupling in vertically coupled quantum dots. Applied Physics Letters, 2000, 77, 4356-4358.	1.5	15
173	Molecular beam epitaxy growth of Ge[sub 1â^'y]C[sub y] alloys on Si (100) with high carbon contents. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 1301.	1.6	11
174	Midinfrared unipolar photoluminescence in InAs/GaAs self-assembled quantum dots. Physical Review B, 1999, 60, 15589-15592.	1.1	17
175	Ge/Si self-assembled quantum dots grown on Si(001) in an industrial high-pressure chemical vapor deposition reactor. Journal of Applied Physics, 1999, 86, 1145-1148.	1.1	23
176	Vertically self-organized Ge/Si(001) quantum dots in multilayer structures. Physical Review B, 1999, 60, 5851-5857.	1.1	135
177	On the formation of self-assembled Ge/Si(001) quantum dots. Journal of Crystal Growth, 1999, 201-202, 1212-1217.	0.7	8
178	Midinfrared second-harmonic generation in p-type InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 1999, 75, 835-837.	1.5	30
179	Intraband absorption in Ge/Si self-assembled quantum dots. Applied Physics Letters, 1999, 74, 401-403.	1.5	79
180	Third-harmonic generation in InAs/GaAs self-assembled quantum dots. Physical Review B, 1999, 59, 9830-9833.	1.1	140

#	Article	IF	CITATIONS
181	Mid-Infrared Emission in InAs/GaAs Self-Assembled Quantum Dots. Materials Research Society Symposia Proceedings, 1999, 571, 279.	0.1	0
182	Intraband Absorption in Ge/Si Self-Assembled Quantum Dots. Materials Research Society Symposia Proceedings, 1999, 571, 9.	0.1	1
183	Quantum fountain infrared light sources based on intersubband emissions in quantum wells. European Physical Journal Special Topics, 1999, 09, Pr2-161.	0.2	0
184	Photoluminescence of self-assembled Ge dots grown by ultra-high-vacuum chemical vapor deposition. Thin Solid Films, 1998, 336, 240-243.	0.8	9
185	Recombination of carriers in SiGe/Si heterostructures measured by photomodulated intersubband absorption. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 777-780.	1.3	5
186	The effects of composition and doping on the response of GeC-Si photodiodes. IEEE Journal of Selected Topics in Quantum Electronics, 1998, 4, 964-969.	1.9	2
187	Resonant excitation of intraband absorption in InAs/GaAs self-assembled quantum dots. Journal of Applied Physics, 1998, 84, 4356-4362.	1.1	18
188	In-plane polarized intraband absorption in InAs/GaAs self-assembled quantum dots. Physical Review B, 1998, 58, 10562-10567.	1.1	83
189	Absorption and emission spectroscopy of intersubband transitions in Si[sub 1â^'x]Ge[sub x]/Si quantum wells. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 1697.	1.6	1
190	Long-wavelength (15.5-μm) quantum fountain intersubband laser InGaAs/AlGaAs quantum wells. , 1998, , .		0
191	Nucleation and growth of self-assembled Ge/Si(001) quantum dots. Physical Review B, 1998, 58, 13115-13120.	1.1	65
192	Investigation of mid-infrared intersubband stimulated gain under optical pumping in GaAs/AlGaAs quantum wells. Journal of Applied Physics, 1998, 83, 2920-2926.	1.1	35
193	Saturation of intraband absorption and electron relaxation time in n-doped InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 1998, 73, 3818-3821.	1.5	48
194	Quantum Fountain Intersubband Laser at 15.5 î $^1\!\!/\!\!4$ m Wavelength in GaAs/AlGaAs Quantum Wells , 1998, , 9-16.		0
195	Intraband Absorption Spectroscopy of Self-Assembled Quantum Dots. , 1998, , 141-146.		0
196	Recombination processes in SiGe/Si quantum wells measured by photoinduced absorption spectroscopy. Physical Review B, 1997, 56, 15734-15739.	1.1	20
197	Intersubband photoluminescence of GaAs quantum wells under selective interband excitation. Applied Physics Letters, 1997, 71, 1183-1185.	1.5	12
198	Intraband absorption in n-doped InAs/GaAs quantum dots. Applied Physics Letters, 1997, 71, 2785-2787.	1.5	142

#	Article	IF	CITATIONS
199	Room temperature infrared intersubband photoluminescence in GaAs quantum wells. Applied Physics Letters, 1997, 70, 1345-1347.	1.5	17
200	Intersubband stimulated emission in GaAs/AlGaAs quantum wells: Pump-probe experiments using a two-color free-electron laser. Applied Physics Letters, 1997, 70, 3197-3199.	1.5	47
201	Long-wavelength (â‰^15.5 μm) unipolar semiconductor laser in GaAs quantum wells. Applied Physics Letters, 1997, 71, 3619-3621.	1.5	134
202	Infrared spectroscopy of intraband transitions in self-organized InAs/GaAs quantum dots. Journal of Applied Physics, 1997, 82, 3396-3401.	1,1	99
203	Spectroscopy of intersubband transitions in Si–Si1â^'xGex quantum wells. Thin Solid Films, 1997, 294, 173-178.	0.8	2
204	RTCVD growth and characterization of SiGeC multi-quantum wells. Thin Solid Films, 1997, 294, 125-128.	0.8	9
205	IR studies of p-type Si/SiGe quantum wells: intersubband absorption, IR detectors, and second-harmonic generation. Thin Solid Films, 1997, 294, 330-335.	0.8	3
206	Erbium doping of Si via ion-beam-induced epitaxial crystallization: another route to room-temperature photoluminescence. Thin Solid Films, 1997, 294, 223-226.	0.8	4
207	Mid-infrared intersubband emission from optically pumped asymmetric coupled quantum wells. Superlattices and Microstructures, 1997, 21, 517-525.	1.4	3
208	Optical Intersubband Absorption and Emission in Quantum Structures., 1997,, 41-61.		0
209	Spontaneous and Stimulated Intersubband Emission Under Optical Pumping. Materials Research Society Symposia Proceedings, 1996, 450, 111.	0.1	1
210	Cavities for Intersubband Transitions. Materials Research Society Symposia Proceedings, 1996, 450, 135.	0.1	2
211	Photoinduced infrared spectroscopy of bound-to-bound and bound-to-continuum transitions in SiGe/Si quantum wells. Superlattices and Microstructures, 1996, 19, 33-38.	1.4	5
212	Intersubband mid-infrared emission in optically pumped quantum wells. Superlattices and Microstructures, 1996, 19, 69-79.	1.4	27
213	Second-order susceptibilities related to valence-band transitions in asymmetric quantum wells. Solid-State Electronics, 1996, 40, 763-766.	0.8	2
214	Growth of Si 1 \hat{a} ' x \hat{a} ' y Ge x C y multi-quantum wells: structural and optical properties. Thin Solid Films, 1996, 278, 114-117.	0.8	10
215	Structural particularities of carbon-incorporated SiGe heterostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 36, 286-290.	1.7	4
216	Photo-induced intersubband absorption in Si/Si1â^'xGex quantum wells. Applied Surface Science, 1996, 102, 342-345.	3.1	4

#	Article	IF	CITATIONS
217	Raman spectroscopy of Si1 â^' x â^' yGexCy layers obtained by pulsed laser induced epitaxy. Applied Surface Science, 1996, 106, 171-178.	3.1	7
218	Time resolved measurement of intersubband lifetime in GaAs quantum wells using a two-colour free electron laser. Electronics Letters, 1996, 32, 2357.	0.5	4
219	Intersubband relaxation time in the valence band of Si/Si1â^'xGex quantum wells. Applied Physics Letters, 1996, 69, 3069-3071.	1.5	12
220	Low temperature electroluminescence spectroscopy of high electron mobility transistors on InP. Journal of Applied Physics, 1996, 80, 464-469.	1.1	11
221	Photoluminescence and intersubband absorption spectroscopy of interdiffused Si/SiGe quantum wells. Journal of Applied Physics, 1996, 80, 1414-1421.	1.1	33
222	Intersubband absorption in Si/Si1â^'xâ^'yGexCy quantum wells. Applied Physics Letters, 1996, 69, 1734-1736.	1.5	5
223	Optical properties of bulk and multi-quantum well SiGe: C heterostructures. , 1996, , 410-413.		0
224	Photo-induced intersubband absorption in Si/SiGe quantum wells., 1996,, 227-230.		0
225	Structural particularities of carbon-incorporated Si–Ge heterostructures. , 1996, , 286-290.		0
226	Realization of Si1â^'x â^' yGexCy/Si heterostructures by pulsed laser induced epitaxy of C+ implanted pseudomorphic SiGe films and of a-SiGeC:H films deposited on Si(100)., 1996,, 436-441.		0
227	Realization of Si 1-x-y Ge x C y /Si heterostructures by pulsed-laser-induced epitaxy of C+implanted pseudomorphic SiGe films and of a-SiGeC:H films deposited on Si(100)., 1995 , 2403 , 362 .		4
228	Schottky Diodes on Si _{1-x-y} Ge _x C _y Alloys Materials Research Society Symposia Proceedings, 1995, 379, 137.	0.1	5
229	Structural and Optical Properties of Sigec Alloys and Multi-Quantum Wells Grown by Rapid Thermal Chemical Vapor Deposition. Materials Research Society Symposia Proceedings, 1995, 379, 447.	0.1	0
230	Optical properties of bulk and multi-quantum well SiGe: C heterostructures. Journal of Crystal Growth, 1995, 157, 410-413.	0.7	5
231	Realization of heterostructures by pulsed laser induced epitaxy of C+ implanted pseudomorphic SiGe films and of a-SiGeC: H films deposited on Si(100). Journal of Crystal Growth, 1995, 157, 436-441.	0.7	24
232	Photo-induced intersubband absorption in quantum wells. Journal of Crystal Growth, 1995, 157, 227-230.	0.7	2
233	Ion beam-induced interfacial growth in Si and silicides. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 206-215.	0.6	6
234	Electroluminescence spectroscopy of AlGaAs/InGaAs and AlGaAs/GaAs highâ€electronâ€mobility transistors. Journal of Applied Physics, 1995, 77, 2184-2189.	1.1	21

#	Article	IF	CITATIONS
235	Photoinduced intersubband absorption in Si/SiGe quantum wells. Applied Physics Letters, 1995, 67, 2948-2950.	1.5	17
236	Photoluminescence study of bandâ€gap alignment of intermixed InAsP/InGaAsP superlattices. Journal of Applied Physics, 1995, 78, 1944-1947.	1.1	13
237	Absorption and resonant dispersion associated with normal incidence intersubband transitions in Si/SiGe quantum wells. Applied Physics Letters, 1995, 67, 3462-3464.	1.5	8
238	Observation of infrared intersubband emission in optically pumped quantum wells. Electronics Letters, 1995, 31, 912-913.	0.5	30
239	Deep erbium-ytterbium implantation codoping of low-loss silicon oxynitride waveguides. Electronics Letters, 1995, 31, 636.	0.5	7
240	Photoluminescence of strained Si1â^'yCy alloys grown at low temperature. Applied Physics Letters, 1995, 66, 70-72.	1.5	53
241	Deep high-dose erbium implantation of low-loss silicon oxynitride waveguides. Electronics Letters, 1994, 30, 1850-1852.	0.5	6
242	Secondâ€harmonic generation in asymmetric Si/SiGe quantum wells. Applied Physics Letters, 1994, 65, 2969-2971.	1.5	38
243	Strain compensated heterostructures in the Silâ^'xâ^'yGexCy ternary system. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 1015-1019.	0.9	45
244	Bandâ€edge and deep level photoluminescence of pseudomorphic Si1â^'xâ^'yGexCyalloys. Applied Physics Letters, 1994, 64, 875-877.	1.5	103
245	In situ ellipsometric control of heterostructures grown by chemical beam epitaxy. Thin Solid Films, 1994, 248, 1-5.	0.8	1
246	Growth and in situ ellipsometric analysis of Si1-xGex alloys deposited by chemical beam epitaxy. Journal of Electronic Materials, 1994, 23, 565-568.	1.0	7
247	Erbium Doping of Silicon and Silicon Carbide Using Ion Beam Induced Epitaxial Crystallization. Materials Research Society Symposia Proceedings, 1994, 354, 141.	0.1	1
248	Photoinduced Intersubband Transitions in GaAs/AlGaAs Asymmetric Coupled Quantum Wells , 1994, , 345-359.		0
249	Growth and characterization of strain compensated Si1â^'xâ^'y epitaxial layers. Materials Letters, 1993, 18, 57-60.	1.3	83
250	Intermixing of GaInP/GaAs multiple quantum wells. Applied Physics Letters, 1993, 62, 178-180.	1.5	26
251	Photoluminescence up-conversion induced by intersubband absorption in asymmetric coupled quantum wells. Physical Review Letters, 1993, 70, 1018-1021.	2.9	41
252	Influence of interface phonons on intersubband scattering in asymmetric coupled quantum wells. Physical Review B, 1993, 47, 12949-12952.	1.1	22

#	Article	IF	CITATIONS
253	Modulation bandwidth enhancement of all-optical modulators based on photo-induced intersub-band absorption in GaAs/AlGaAs quantum wells by proton bombardment. Electronics Letters, 1992, 28, 1373.	0.5	2
254	Saturation of second-harmonic generation in GaAs–AlGaAs asymmetric quantum wells. Optics Letters, 1991, 16, 199.	1.7	39
255	Génération de second-harmonique dans les puits quantiques asymetriques GaAs-AlGaAs. Journal De Physique III, 1991, 1, 13-28.	0.3	7
256	Laser diode modulation of 10.6 \hat{l} /4m radiation in GaAs/AlGaAs quantum wells. Electronics Letters, 1990, 26, 1531.	0.5	5
257	Compositionally asymmetrical multiquantum wells: "Pseudo-molecules―for giant optical nonlinearities in the infrared (9–11 μm). Superlattices and Microstructures, 1990, 8, 369-374.	1.4	23
258	Detailed analysis of secondâ€harmonic generation near 10.6 μm in GaAs/AlGaAs asymmetric quantum wells. Applied Physics Letters, 1990, 57, 215-217.	1.5	106
259	Intersubband absorption of GaAs/AlGaAs quantum wells in MBE grown mid-infrared slab waveguides. IEEE Photonics Technology Letters, 1990, 2, 181-183.	1.3	20
260	First demonstration of room temperature intersubband-interband double-resonance spectroscopy of GaAs/AlGaAs quantum wells. IEEE Photonics Technology Letters, 1990, 2, 398-400.	1.3	22
261	Light emission from Ge/Si self-assembled islands in microcavities. , 0, , .		0
262	Square lattice photonic crystal waveguides for lasers emitting at 1.55 \hat{l} 4m. , 0, , .		1
263	Detection of THz electromagnetic radiation with Si/SiGe HFET. , 0, , .		3
264	SOI-based photonic crystals investigated by Ge/Si self-assembled island luminescence. , 0, , .		0