
Didier Hocquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4403149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Populations of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae are different in human-polluted environment and food items: a multicentre European study. Clinical Microbiology and Infection, 2022, 28, 447.e7-447.e14.	2.8	17
2	Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. Environment International, 2022, 159, 107047.	4.8	70
3	One Health compartmental analysis of ESBL-producing <i>Escherichia coli</i> on Reunion Island reveals partitioning between humans and livestock. Journal of Antimicrobial Chemotherapy, 2022, 77, 1254-1262.	1.3	20
4	Worldwide cases of water pollution by emerging contaminants: a review. Environmental Chemistry Letters, 2022, 20, 2311-2338.	8.3	117
5	Origin, fluxes, and reservoirs of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa in aquatic ecosystems of a French floodplain. Science of the Total Environment, 2022, 834, 155353.	3.9	4
6	High prevalence of Pseudomonas aeruginosa carriage in residents of French and German long-term care facilities. Clinical Microbiology and Infection, 2022, 28, 1353-1358.	2.8	9
7	The Fate of Antibiotic-Resistant Bacteria in the Environment. Environmental Chemistry for A Sustainable World, 2021, , 207-260.	0.3	2
8	Emerging Contaminants: Analysis, Aquatic Compartments and Water Pollution. Environmental Chemistry for A Sustainable World, 2021, , 1-111.	0.3	3
9	ESBL-producing Klebsiella pneumoniae in a University hospital: Molecular features, diffusion of epidemic clones and evaluation of cross-transmission. PLoS ONE, 2021, 16, e0247875.	1.1	12
10	Hospital-diagnosed infections with Escherichia coli clonal group ST131 are mostly acquired in the community. Scientific Reports, 2021, 11, 5702.	1.6	17
11	ePTFE functionalization for medical applications. Materials Today Chemistry, 2021, 20, 100412.	1.7	21
12	The rise and the fall of a Pseudomonas aeruginosa endemic lineage in a hospital. Microbial Genomics, 2021, 7, .	1.0	3
13	Household acquisition and transmission of extended-spectrum β-lactamase (ESBL) -producing Enterobacteriaceae after hospital discharge of ESBL-positive index patients. Clinical Microbiology and Infection, 2021, 27, 1322-1329.	2.8	14
14	Nosocomial cluster of carbapenemase-producing Enterobacter cloacae in an intensive care unit dedicated COVID-19. Antimicrobial Resistance and Infection Control, 2021, 10, 151.	1.5	8
15	Genotypic study of Citrobacter koseri , an emergent platelet contaminant since 2012 in France. Transfusion, 2020, 60, 245-249.	0.8	3
16	High Prevalence of Human-Associated Escherichia coli in Wetlands Located in Eastern France. Frontiers in Microbiology, 2020, 11, 552566.	1.5	8
17	Combined Bacteriophage and Antibiotic Treatment Prevents Pseudomonas aeruginosa Infection of Wild Type and cftr- Epithelial Cells. Frontiers in Microbiology, 2020, 11, 1947.	1.5	20
18	Human Infection of Methicillin-Susceptible Staphylococcus aureus CC398: A Review. Microorganisms, 2020, 8, 1737.	1.6	36

#	Article	IF	CITATIONS
19	Rosacea is associated with conjoined interactions between physical barrier of the skin and microorganisms: A pilot study. Journal of Clinical Laboratory Analysis, 2020, 34, e23363.	0.9	13
20	Epidemiology and risk factors of Staphylococcus aureus CC398 bone and joint infections. BMC Infectious Diseases, 2020, 20, 384.	1.3	10
21	Comparison of pulsed-field gel electrophoresis and whole-genome-sequencing-based typing confirms the accuracy of pulsed-field gel electrophoresis for the investigation of local Pseudomonas aeruginosa outbreaks. Journal of Hospital Infection, 2020, 105, 643-647.	1.4	11
22	Using GFP-Tagged Escherichia coli to Investigate the Persistence of Fecal Bacteria in Vegetated Wetlands: An Experimental Approach. Antibiotics, 2020, 9, 335.	1.5	2
23	High genetic diversity among methicillin-susceptible Staphylococcus pseudintermedius in dogs in Europe. Journal of Global Antimicrobial Resistance, 2020, 21, 57-59.	0.9	7
24	Genome analysis of enterobacteriaceae with non-wild type susceptibility to third-generation cephalosporins recovered from diseased dogs and cats in Europe. Veterinary Microbiology, 2020, 242, 108601.	0.8	16
25	Carbapenemase-producing Enterobacteriaceae circulating in the Reunion Island, a French territory in the Southwest Indian Ocean. Antimicrobial Resistance and Infection Control, 2020, 9, 36.	1.5	13
26	Antimicrobial susceptibility of nine udder pathogens recovered from bovine clinical mastitis milk in Europe 2015–2016: VetPath results. Veterinary Microbiology, 2020, 245, 108644.	0.8	31
27	Impact of anticancer chemotherapy on the extension of beta-lactamase spectrum: an example with KPC-type carbapenemase activity towards ceftazidime-avibactam. Scientific Reports, 2020, 10, 589.	1.6	16
28	Deciphering the role of insertion sequences in the evolution of bacterial epidemic pathogens with panISa software. Microbial Genomics, 2020, 6, .	1.0	6
29	Fourier-Transform InfraRed Spectroscopy Can Quickly Type Gram-Negative Bacilli Responsible for Hospital Outbreaks. Frontiers in Microbiology, 2019, 10, 1440.	1.5	73
30	Increasing incidence of bloodstream infections due to Staphylococcus aureus clonal complex 398 in a French hospital between 2010 and 2017. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 2127-2132.	1.3	15
31	Management of carbapenemase-producing <i>Enterobacteriaceae</i> in a low incidence area: A six-year experience in a university hospital. Infection Control and Hospital Epidemiology, 2019, 40, 936-938.	1.0	3
32	Occurrence and ecological determinants of the contamination of floodplain wetlands with Klebsiella pneumoniae and pathogenic or antibiotic-resistant Escherichia coli FEMS Microbiology Ecology, 2019, 95, .	1.3	20
33	Contamination of a hospital plumbing system by persister cells of a copper-tolerant high-risk clone of Pseudomonas aeruginosa. Water Research, 2019, 157, 579-586.	5.3	23
34	A nonlinear time-series analysis approach to identify thresholds in associations between population antibiotic use and rates of resistance. Nature Microbiology, 2019, 4, 1160-1172.	5.9	58
35	Carbapenem-Susceptible OXA-23-Producing Proteus mirabilis in the French Community. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	10
36	Enhanced emergence of antibiotic-resistant pathogenic bacteria after in vitro induction with cancer chemotherapy drugs. Journal of Antimicrobial Chemotherapy, 2019, 74, 1572-1577.	1.3	17

#	Article	IF	CITATIONS
37	Molecular epidemiology of Pseudomonas aeruginosa isolated from infected ICU patients: a French multicenter 2012–2013 study. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 921-926.	1.3	18
38	Occurrence of VIM-4 metallo-β-lactamase-producing Pseudomonas aeruginosa in an Algerian hospital. Journal of Infection in Developing Countries, 2019, 13, 284-290.	0.5	13
39	A Bundle of Measures to Control an Outbreak of <i>Pseudomonas aeruginosa</i> Associated With P-Trap Contamination. Infection Control and Hospital Epidemiology, 2018, 39, 164-169.	1.0	35
40	No effect of vancomycin MIC ≥ 1.5 mg/L on treatment outcome in methicillin-susceptible Staph aureus bacteraemia. International Journal of Antimicrobial Agents, 2018, 51, 721-726.	ylococcus 1.1	8
41	Which non-carbapenem antibiotics are active against extended-spectrum β-lactamase-producing Enterobacteriaceae?. International Journal of Antimicrobial Agents, 2018, 52, 100-103.	1.1	29
42	Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clinical Microbiology and Infection, 2018, 24, 258-266.	2.8	138
43	mcr-1-like detection in commensal Escherichia coli and Salmonella spp. from food-producing animals at slaughter in Europe. Veterinary Microbiology, 2018, 213, 42-46.	0.8	62
44	Rapid antibiotic susceptibility testing on blood cultures using MALDI-TOF MS. PLoS ONE, 2018, 13, e0205603.	1.1	22
45	Outbreak of IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae on the French island of Mayotte (Indian Ocean). International Journal of Antimicrobial Agents, 2018, 52, 416-420.	1.1	17
46	<i>panISa: ab initio</i> detection of insertion sequences in bacterial genomes from short read sequence data. Bioinformatics, 2018, 34, 3795-3800.	1.8	29
47	Epidemiology of invasive fungal infections during induction therapy in adults with acute lymphoblastic leukemia: a GRAALL-2005 study. Leukemia and Lymphoma, 2017, 58, 586-593.	0.6	47
48	Can MALDI-TOF Mass Spectrometry Reasonably Type Bacteria?. Trends in Microbiology, 2017, 25, 447-455.	3.5	159
49	High prevalence and moderate diversity of Pseudomonas aeruginosa in the U-bends of high-risk units in hospital. International Journal of Hygiene and Environmental Health, 2017, 220, 880-885.	2.1	18
50	The ST131 Escherichia coli H22 subclone from human intestinal microbiota: Comparison of genomic and phenotypic traits with those of the globally successful H30 subclone. BMC Microbiology, 2017, 17, 71.	1.3	28
51	mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food-producing animals in Europe. Clinical Microbiology and Infection, 2017, 23, 51.e1-51.e4.	2.8	70
52	Genomic characterization of a local epidemic Pseudomonas aeruginosa reveals specific features of the widespread clone ST395. Microbial Genomics, 2017, 3, e000129.	1.0	21
53	Pyomelaninâ€producing <i>Pseudomonas aeruginosa</i> selected during chronic infections have a large chromosomal deletion which confers resistance to pyocins. Environmental Microbiology, 2016, 18, 3482-3493.	1.8	57
54	Matrix-assisted laser desorption ionization-time of flight Mass spectrometry can detect Staphylococcus aureus clonal complex 398. Journal of Microbiological Methods, 2016, 127, 20-23.	0.7	25

#	Article	IF	CITATIONS
55	Trends of extended-spectrum β-lactamase-producing Escherichia coli sequence type 131 and its H 30 subclone in a French hospital over a 15-year period. International Journal of Antimicrobial Agents, 2016, 48, 744-747.	1.1	18
56	High susceptibility of MDR and XDR Gram-negative pathogens to biphenyl-diacetylene-based difluoromethyl- <i>allo</i> -threonyl-hydroxamate LpxC inhibitors. Journal of Antimicrobial Chemotherapy, 2016, 71, 2874-2882.	1.3	25
57	Appropriateness of aminoglycoside prescriptions in a French university hospital. Médecine Et Maladies Infectieuses, 2016, 46, 308-313.	5.1	2
58	High prevalence of international ESBL CTX-M-15-producing <i>Enterobacter cloacae</i> ST114 clone in animals. Journal of Antimicrobial Chemotherapy, 2016, 71, 1497-1500.	1.3	40
59	What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. Journal of Hospital Infection, 2016, 93, 395-402.	1.4	235
60	Clonal complex 398 methicillin-susceptible Staphylococcus aureus bloodstream infections are associated with high mortality. Clinical Microbiology and Infection, 2016, 22, 451-455.	2.8	38
61	Fluoroquinolone Resistance Mechanisms and population structure of Enterobacter cloacae non-susceptible to Ertapenem in North-Eastern France. Frontiers in Microbiology, 2015, 6, 1186.	1.5	32
62	Comparison of double-locus sequence typing (DLST) and multilocus sequence typing (MLST) for the investigation of Pseudomonas aeruginosa populations. Diagnostic Microbiology and Infectious Disease, 2015, 82, 274-277.	0.8	20
63	Detection of Escherichia coli sequence type 131 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: implications for infection control policies?. Journal of Hospital Infection, 2015, 90, 208-212.	1.4	20
64	Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Identifies Pseudomonas aeruginosa High-Risk Clones. Journal of Clinical Microbiology, 2015, 53, 1395-1398.	1.8	51
65	Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Veterinary Research, 2015, 11, 9.	0.7	50
66	What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated. PLoS ONE, 2015, 10, e0126468.	1.1	91
67	Relation between Insertion Sequences and Genome Rearrangements in Pseudomonas aeruginosa. Lecture Notes in Computer Science, 2015, , 426-437.	1.0	1
68	Wastewater Treatment Plants Release Large Amounts of Extended-Spectrum β-Lactamase–Producing Escherichia coli Into the Environment. Clinical Infectious Diseases, 2014, 58, 1658-1665.	2.9	143
69	Comparative Genomic Analysis of Two Multidrug-Resistant Clinical Isolates of ST395 Epidemic Strain of Pseudomonas aeruginosa Obtained 12 Years Apart. Genome Announcements, 2014, 2, .	0.8	9
70	Validation of an automated blood culture system for sterility testing ofÂcell therapy products. Cytotherapy, 2014, 16, 692-698.	0.3	16
71	When the precautionary principle disrupts 3 years of antibiotic stewardship: nitrofurantoin in the treatment of urinary tract infections. Journal of Antimicrobial Chemotherapy, 2014, 69, 282-284.	1.3	11
72	Metronidazole increases the emergence of ciprofloxacin- and amikacin-resistant Pseudomonas aeruginosa by inducing the SOS response. Journal of Antimicrobial Chemotherapy, 2014, 69, 852-854.	1.3	18

Didier Hocquet

#	Article	IF	CITATIONS
73	Matrix-assisted laser desorption ionization-time of flight mass spectrometry assigns Escherichia coli to the phylogroups A, B1, B2 and D. International Journal of Medical Microbiology, 2014, 304, 977-983.	1.5	37
74	Prevalence of Escherichia coli sequence type 131 and its H30 subclone among E. coli isolates in a French hospital. International Journal of Antimicrobial Agents, 2014, 44, 466-468.	1.1	10
75	Pseudomonas aeruginosa in French hospitals between 2001 and 2011: back to susceptibility. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 1713-1717.	1.3	13
76	Rapid, sensitive and specific detection of OXA-48-like-producing Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Microbiological Methods, 2014, 105, 88-91.	0.7	26
77	Genomic analysis of the emergence of 20th century epidemic dysentery. BMC Genomics, 2014, 15, 355.	1.2	32
78	Molecular epidemiology of OXA-48-producing Klebsiella pneumoniae in France. Clinical Microbiology and Infection, 2014, 20, 01121-01123.	2.8	51
79	Population Structure of Clinical Pseudomonas aeruginosa from West and Central African Countries. PLoS ONE, 2014, 9, e107008.	1.1	23
80	Hospital cross-transmission of extended-spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae. Médecine Et Maladies Infectieuses, 2013, 43, 331-336.	5.1	13
81	Diversity of Â-lactam resistance mechanisms in cystic fibrosis isolates of Pseudomonas aeruginosa: a French multicentre study. Journal of Antimicrobial Chemotherapy, 2013, 68, 1763-1771.	1.3	59
82	Hospital environmental contamination with Enterobacteriaceae producing extended-spectrum β-lactamase. American Journal of Infection Control, 2013, 41, 664-665.	1.1	11
83	Evaluation of the number of opportunities for hand hygiene in hospital: A new methodological approach. International Journal of Nursing Studies, 2013, 50, 413-418.	2.5	2
84	Antibiotics involved in the occurrence of antibiotic-resistant bacteria: a nationwide multilevel study suggests differences within antibiotic classes. Journal of Antimicrobial Chemotherapy, 2013, 68, 461-470.	1.3	51
85	Evidence for Induction of Integron-Based Antibiotic Resistance by the SOS Response in a Clinical Setting. PLoS Pathogens, 2012, 8, e1002778.	2.1	109
86	Identifying Patients Harboring Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae on Hospital Admission Is Not That Simple. Antimicrobial Agents and Chemotherapy, 2012, 56, 2218-2219.	1.4	6
87	Contamination bactérienne de l'environnement hospitalier lors du changement de pansements des plaies chroniques. Revue De Chirurgie Orthopedique Et Traumatologique, 2012, 98, 393-398.	0.0	Ο
88	Temporal effects of infection control practices and the use of antibiotics on the incidence of MRSA. Journal of Hospital Infection, 2012, 82, 164-169.	1.4	11
89	Bacterial contamination of the hospital environment during wound dressing change. Orthopaedics and Traumatology: Surgery and Research, 2012, 98, 441-445.	0.9	18
90	Tracking Down Antibiotic-Resistant Pseudomonas aeruginosa Isolates in a Wastewater Network. PLoS ONE, 2012, 7, e49300.	1.1	97

#	Article	IF	CITATIONS
91	Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends in Microbiology, 2011, 19, 341-348.	3.5	306
92	Strain-Tailored Double-Disk Synergy Test Detects Extended-Spectrum Oxacillinases in Pseudomonas aeruginosa. Journal of Clinical Microbiology, 2011, 49, 2262-2265.	1.8	15
93	Most Multidrug-Resistant Pseudomonas aeruginosa Isolates from Hospitals in Eastern France Belong to a Few Clonal Types. Journal of Clinical Microbiology, 2011, 49, 2578-2583.	1.8	83
94	Ceftazidime-hydrolysing Â-lactamase OXA-145 with impaired hydrolysis of penicillins in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2011, 66, 1745-1750.	1.3	19
95	Molecular epidemiology of multidrug-resistant Pseudomonas aeruginosa in a French university hospital. Journal of Hospital Infection, 2010, 76, 316-319.	1.4	26
96	Detection of a new extended-spectrum oxacillinase in Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2010, 65, 364-365.	1.3	20
97	Hospital outbreak of Pseudomonas aeruginosa producing extended-spectrum oxacillinase OXA-19. Journal of Medical Microbiology, 2010, 59, 866-869.	0.7	5
98	Nationwide Investigation of Extended-Spectrum β-Lactamases, Metallo-β-Lactamases, and Extended-Spectrum Oxacillinases Produced by Ceftazidime-Resistant <i>Pseudomonas aeruginosa</i> Strains in France. Antimicrobial Agents and Chemotherapy, 2010, 54, 3512-3515.	1.4	56
99	Antimicrobial activity against Streptococcus pneumoniae and Haemophilus influenzae collected globally between 2004 and 2008 as part of the Tigecycline Evaluation and Surveillance Trial. Diagnostic Microbiology and Infectious Disease, 2010, 67, 78-86.	0.8	29
100	Emergence of extensive-drug-resistant Pseudomonas aeruginosa in a French university hospital. European Journal of Clinical Microbiology and Infectious Diseases, 2009, 28, 1217-1222.	1.3	28
101	Antibiotic susceptibility and mechanisms of β-lactam resistance among clinical strains of PseudomonasÂaeruginosa: First report in Algeria. Médecine Et Maladies Infectieuses, 2008, 38, 187-191.	5.1	16
102	Relationship between Antibiotic Use and Incidence of MexXY-OprM Overproducers among Clinical Isolates of <i>Pseudomonas aeruginosa</i> . Antimicrobial Agents and Chemotherapy, 2008, 52, 1173-1175.	1.4	42
103	Cumulative Effects of Several Nonenzymatic Mechanisms on the Resistance of Pseudomonas aeruginosa to Aminoglycosides. Antimicrobial Agents and Chemotherapy, 2007, 51, 1016-1021.	1.4	95
104	MexAB-OprM- and MexXY-Overproducing Mutants Are Very Prevalent among Clinical Strains of Pseudomonas aeruginosa with Reduced Susceptibility to Ticarcillin. Antimicrobial Agents and Chemotherapy, 2007, 51, 1582-1583.	1.4	48
105	Susceptibility of Pseudomonas aeruginosa to antimicrobials: a 2004 French multicentre hospital study. Journal of Antimicrobial Chemotherapy, 2007, 59, 1021-1024.	1.3	50
106	<i>Pseudomonas aeruginosa</i> May Accumulate Drug Resistance Mechanisms without Losing Its Ability To Cause Bloodstream Infections. Antimicrobial Agents and Chemotherapy, 2007, 51, 3531-3536.	1.4	91
107	Genetic analysis of a multiresistant strain of Pseudomonas aeruginosa producing PER-1 β-lactamase. Clinical Microbiology and Infection, 2006, 12, 270-278.	2.8	28
108	In-vivo impact of the MexXY efflux system on aminoglycoside efficacy in an experimental model of Pseudomonas aeruginosa pneumonia treated with tobramycin. Clinical Microbiology and Infection, 2006, 12, 426-432.	2.8	8

#	Article	IF	CITATIONS
109	Involvement of the MexXY-OprM Efflux System in Emergence of Cefepime Resistance in Clinical Strains of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2006, 50, 1347-1351.	1.4	128
110	Susceptibility of Escherichia coli to the amoxycillin-clavulanate combination: which recommendations should be used to provide relevant information to clinicians?. Clinical Microbiology and Infection, 2005, 11, 237-240.	2.8	2
111	Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2005, 55, 518-522.	1.3	31
112	Mutations in PA3574 (nalD) Lead to Increased MexAB-OprM Expression and Multidrug Resistance in Laboratory and Clinical Isolates of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2005, 49, 1782-1786.	1.4	126
113	Molecular Characterization of an Epidemic Clone of Panantibiotic-Resistant Pseudomonas aeruginosa. Journal of Clinical Microbiology, 2005, 43, 1198-1204.	1.8	135
114	Role of the Multidrug Efflux System MexXY in the Emergence of Moderate Resistance to Aminoglycosides among Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis. Antimicrobial Agents and Chemotherapy, 2004, 48, 1676-1680.	1.4	126
115	Clinical Strains of Pseudomonas aeruginosa Overproducing MexAB-OprM and MexXY Efflux Pumps Simultaneously. Antimicrobial Agents and Chemotherapy, 2004, 48, 1797-1802.	1.4	226
116	Characterisation of Methicillin-Resistant Staphylococcus aureus with Reduced Susceptibility to Teicoplanin in Eastern France. European Journal of Clinical Microbiology and Infectious Diseases, 2003, 22, 504-506.	1.3	8
117	Molecular epidemiology of Enterobacteriaceae producing extended-spectrum β-lactamase in a French university-affiliated hospital. International Journal of Antimicrobial Agents, 2003, 22, 128-133.	1.1	26
118	Genetic and Phenotypic Variations of a Resistant Pseudomonas aeruginosa Epidemic Clone. Antimicrobial Agents and Chemotherapy, 2003, 47, 1887-1894.	1.4	85
119	MexXY-OprM Efflux Pump Is Necessary for Adaptive Resistance of Pseudomonas aeruginosa to Aminoglycosides. Antimicrobial Agents and Chemotherapy, 2003, 47, 1371-1375.	1.4	153
120	Relationship between molecular epidemiology and antibiotic susceptibility of methicillin-resistant Staphylococcus aureus (MRSA) in a French teaching hospital. Journal of Medical Microbiology, 2003, 52, 801-806.	0.7	19
121	Etiologies of acute, persistent, and dysenteric diarrheas in adults in Bangui, Central African Republic, in relation to human immunodeficiency virus serostatus American Journal of Tropical Medicine and Hygiene, 1998, 59, 1008-1014.	0.6	91