
Javier Sedano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4402722/publications.pdf Version: 2024-02-01

LAVIED SEDANO

#	Article	IF	CITATIONS
1	Autonomous on-wrist acceleration-based fall detection systems: unsolved challenges. Neurocomputing, 2021, 452, 404-413.	5.9	6
2	Fall Detection Analysis Using a Real Fall Dataset. Advances in Intelligent Systems and Computing, 2019, , 334-343.	0.6	3
3	Neural Visualization for the Analysis of Energy and Water Consumptions in the Automotive Industry. Advances in Intelligent Systems and Computing, 2019, , 167-176.	0.6	0
4	Emerging Technologies: IoT, Big Data, and CPS with Sensory Systems. Journal of Sensors, 2018, 2018, 1-3.	1.1	4
5	Evaluation of a Wrist-Based Wearable Fall Detection Method. Lecture Notes in Computer Science, 2018, , 377-386.	1.3	8
6	Identification of abnormal movements with 3D accelerometer sensors for seizure recognition. Journal of Applied Logic, 2017, 24, 54-61.	1.1	10
7	An IoT Platform for Epilepsy Monitoring and Supervising. Journal of Sensors, 2017, 2017, 1-18.	1.1	40
8	Pre-Clinical Study on the Detection of Simulated Epileptic Seizures. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2016, 24, 33-46.	1.9	2
9	Generalized Models for the Classification of Abnormal Movements in Daily Life and its Applicability to Epilepsy Convulsion Recognition. International Journal of Neural Systems, 2016, 26, 1650037.	5.2	42
10	Simple heuristics for enhancing GP learning. Logic Journal of the IGPL, 2015, 23, 472-484.	1.5	1
11	A hybrid intelligent recognition system for the early detection of strokes. Integrated Computer-Aided Engineering, 2015, 22, 215-227.	4.6	15
12	A novel hybrid intelligent system for multi-objective machine parameter optimization. Pattern Analysis and Applications, 2015, 18, 31-44.	4.6	3
13	A CLUSTER MERGING METHOD FOR TIME SERIES MICROARRAY WITH PRODUCTION VALUES. International Journal of Neural Systems, 2014, 24, 1450018.	5.2	13
14	Urban bicycles renting systems: Modelling and optimization using nature-inspired search methods. Neurocomputing, 2014, 135, 98-106.	5.9	10
15	Applying soft computing techniques to optimise a dental milling process. Neurocomputing, 2013, 109, 94-104.	5.9	18
16	Mutating network scans for the assessment of supervised classifier ensembles. Logic Journal of the IGPL, 2013, 21, 630-647.	1.5	6
17	An intelligent route management system for electric vehicle charging. Integrated Computer-Aided Engineering, 2013, 20, 321-333.	4.6	15
18	Soft Computing for the Analysis of People Movement Classification. Advances in Intelligent Systems and Computing, 2013, , 241-248.	0.6	1

JAVIER SEDANO

#	Article	IF	CITATIONS
19	Meta-heuristic improvements applied for steel sheet incremental cold shaping. Memetic Computing, 2012, 4, 249-261.	4.0	10
20	Optimizing the operating conditions in a high precision industrial process using soft computing techniques. Expert Systems, 2012, 29, 276-299.	4.5	9
21	Multi-objective learning of white box models with low quality data. Neurocomputing, 2012, 75, 219-225.	5.9	1
22	Prediction of Dental Milling Time-Error by Flexible Neural Trees and Fuzzy Rules. Lecture Notes in Computer Science, 2012, , 842-849.	1.3	0
23	Comparison of Fuzzy Functions for Low Quality Data GAP Algorithms. Lecture Notes in Computer Science, 2012, , 339-349.	1.3	0
24	Intelligent operating conditions design by means of bio-inspired models. , 2011, , .		0
25	Optimising operational costs using Soft Computing techniques. Integrated Computer-Aided Engineering, 2011, 18, 313-325.	4.6	11
26	Steel Sheet Incremental Cold Shaping Improvements Using Hybridized Genetic Algorithms with Support Vector Machines and Neural Networks. Studies in Computational Intelligence, 2011, , 323-332.	0.9	1
27	Machine Parameters Optimisation Using Soft Computing Techniques for a Dental Milling Process. Advances in Intelligent and Soft Computing, 2011, , 599-609.	0.2	0
28	Soft Computing Decision Support for a Steel Sheet Incremental Cold Shaping Process. Lecture Notes in Computer Science, 2011, , 482-489.	1.3	2
29	Testing Ensembles for Intrusion Detection: On the Identification of Mutated Network Scans. Lecture Notes in Computer Science, 2011, , 109-117.	1.3	3
30	An Study of the Tree Generation Algorithms in Equation Based Model Learning with Low Quality Data. Lecture Notes in Computer Science, 2011, , 84-91.	1.3	1
31	A Hybrid System for Dental Milling Parameters Optimisation. Lecture Notes in Computer Science, 2011, , 437-446.	1.3	1
32	Tree Generation Methods Comparison in GAP Problems with Low Quality Data. Advances in Intelligent and Soft Computing, 2011, , 85-93.	0.2	1
33	Optimizing a dental milling process by means of soft computing techniques. , 2010, , .		6
34	A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering, 2010, 17, 103-115.	4.6	83
35	A bio-inspired computational high-precision dental milling system. , 2010, , .		4
36	Improving enterprise resource planning results using knowledge extraction and learning. , 2010, , .		0

JAVIER SEDANO

#	Article	IF	CITATIONS
37	Modelling of Heat Flux in Building Using Soft-Computing Techniques. Lecture Notes in Computer Science, 2010, , 636-645.	1.3	1
38	Evaluating the Low Quality Measurements in Lighting Control Systems. Advances in Intelligent and Soft Computing, 2010, , 119-126.	0.2	1
39	Low Quality Data Management for Optimising Energy Efficiency in Distributed Agents. Advances in Intelligent and Soft Computing, 2010, , 673-680.	0.2	Ο
40	Analysing the Low Quality of the Data in Lighting Control Systems. Lecture Notes in Computer Science, 2010, , 421-428.	1.3	4
41	A fuzzy logic based efficient energy saving approach for domestic heating systems. Integrated Computer-Aided Engineering, 2009, 16, 151-163.	4.6	40
42	The application of a two-step AI model to an automated pneumatic drilling process. International Journal of Computer Mathematics, 2009, 86, 1769-1777.	1.8	17
43	Unsupervised Feature Selection in High Dimensional Spaces and Uncertainty. Lecture Notes in Computer Science, 2009, , 565-572.	1.3	4
44	Improving Energy Efficiency in Buildings Using Machine Intelligence. Lecture Notes in Computer Science, 2009, , 773-782.	1.3	6
45	A Thermodynamical Model Study for an Energy Saving Algorithm. Lecture Notes in Computer Science, 2009, , 384-390.	1.3	3
46	Efficiency in Electrical Heating Systems: An MAS Real World Application. Advances in Intelligent and Soft Computing, 2009, , 460-469.	0.2	2
47	A Soft Computing System to Perform Face Milling Operations. Lecture Notes in Computer Science, 2009, , 1282-1291.	1.3	3
48	Conventional Methods and AI models for Solving an Industrial an Industrial Problem. , 2008, , .		0
49	Minimizing Energy Consumption in Heating Systems under Uncertainty. Lecture Notes in Computer Science, 2008, , 583-590.	1.3	8
50	AI for Modelling the Laser Milling of Copper Components. Lecture Notes in Computer Science, 2008, , 498-507.	1.3	4
51	Energy Saving by Means of Fuzzy Systems. Lecture Notes in Computer Science, 2007, , 155-167.	1.3	4
52	Early Detection of Flash Floods Using Case-Based Reasoning. , 0, , .		0