
Jeffrey A Reimer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4402480/publications.pdf Version: 2024-02-01

IFFEDEV & REIMED

#	Article	IF	CITATIONS
1	Carbon capture and storage (CCS): the way forward. Energy and Environmental Science, 2018, 11, 1062-1176.	15.6	2,378
2	Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 2015, 519, 303-308.	13.7	1,026
3	Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature, 2019, 576, 253-256.	13.7	438
4	Mapping of Functional Groups in Metal-Organic Frameworks. Science, 2013, 341, 882-885.	6.0	411
5	Chemical Conversion of Linkages in Covalent Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 15519-15522.	6.6	373
6	The Chemistry of CO ₂ Capture in an Amine-Functionalized Metal–Organic Framework under Dry and Humid Conditions. Journal of the American Chemical Society, 2017, 139, 12125-12128.	6.6	371
7	Metal–Organic Frameworks with Precisely Designed Interior for Carbon Dioxide Capture in the Presence of Water. Journal of the American Chemical Society, 2014, 136, 8863-8866.	6.6	369
8	A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction. Journal of the American Chemical Society, 2016, 138, 8120-8125.	6.6	340
9	Structure and Density of Mo and Acid Sites in Mo-Exchanged H-ZSM5 Catalysts for Nonoxidative Methane Conversion. Journal of Physical Chemistry B, 1999, 103, 5787-5796.	1.2	303
10	Crystalline Dioxin-Linked Covalent Organic Frameworks from Irreversible Reactions. Journal of the American Chemical Society, 2018, 140, 12715-12719.	6.6	289
11	CO ₂ Dynamics in a Metal–Organic Framework with Open Metal Sites. Journal of the American Chemical Society, 2012, 134, 14341-14344.	6.6	278
12	Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks. Science, 2020, 369, 392-396.	6.0	249
13	Multiple-Quantum NMR Study of Clustering in Hydrogenated Amorphous Silicon. Physical Review Letters, 1986, 56, 1377-1380.	2.9	209
14	A Diaminopropane-Appended Metal–Organic Framework Enabling Efficient CO ₂ Capture from Coal Flue Gas via a Mixed Adsorption Mechanism. Journal of the American Chemical Society, 2017, 139, 13541-13553.	6.6	206
15	ldentification of the strong BrÃnsted acid site in a metal–organic framework solid acid catalyst. Nature Chemistry, 2019, 11, 170-176.	6.6	198
16	Understanding CO ₂ Dynamics in Metal–Organic Frameworks with Open Metal Sites. Angewandte Chemie - International Edition, 2013, 52, 4410-4413.	7.2	160
17	High-Resolution NMR Spectroscopy with a Portable Single-Sided Sensor. Science, 2005, 308, 1279-1279.	6.0	142
18	Methanol formation on Fe/Al-MFI via the oxidation of methane by nitrous oxide. Journal of Catalysis, 2004, 225, 300-306.	3.1	137

#	Article	IF	CITATIONS
19	Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease. Journal of the American Chemical Society, 2016, 138, 7603-7609.	6.6	137
20	On the Salt-Induced Activation of Lyophilized Enzymes in Organic Solvents:Â Effect of Salt Kosmotropicity on Enzyme Activity. Journal of the American Chemical Society, 2000, 122, 1565-1571.	6.6	135
21	Inhomogeneous carbon bonding in hydrogenated amorphous carbon films. Journal of Applied Physics, 1987, 61, 2874-2877.	1.1	128
22	Reticular Synthesis of Multinary Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11420-11424.	6.6	126
23	Dynamic Covalent Synthesis of Crystalline Porous Graphitic Frameworks. CheM, 2020, 6, 933-944.	5.8	123
24	Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites. Nature Materials, 2020, 19, 517-521.	13.3	121
25	An in situ infrared study of NO reduction by C3H8 over Feâ€ZSMâ€5. Catalysis Letters, 1999, 63, 233-240.	1.4	115
26	Hyperfine Fields at the Li Site in LiFePO4-Type Olivine Materials for Lithium Rechargeable Batteries:Â A7Li MAS NMR and SQUID Study. Journal of the American Chemical Society, 2002, 124, 3832-3833.	6.6	107
27	Elucidating CO ₂ Chemisorption in Diamine-Appended Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 18016-18031.	6.6	107
28	Water Enables Efficient CO ₂ Capture from Natural Gas Flue Emissions in an Oxidation-Resistant Diamine-Appended Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 13171-13186.	6.6	107
29	Nitrous oxide decomposition and surface oxygen formation on Fe-ZSM-5. Journal of Catalysis, 2004, 224, 148-155.	3.1	106
30	Magnesium silicide as a negative electrode material for lithium-ion batteries. Journal of Power Sources, 2002, 110, 424-429.	4.0	103
31	Optimizing the salt-induced activation of enzymes in organic solvents: Effects of lyophilization time and water content. , 1999, 63, 233-241.		98
32	Solid-State NMR Investigations of Carbon Dioxide Gas in Metal–Organic Frameworks: Insights into Molecular Motion and Adsorptive Behavior. Chemical Reviews, 2018, 118, 10033-10048.	23.0	93
33	Multistep Solid-State Organic Synthesis of Carbamate-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11253-11258.	6.6	92
34	Orientation-independent room temperature optical ¹³ C hyperpolarization in powdered diamond. Science Advances, 2018, 4, eaar5492.	4.7	91
35	Highly effective ammonia removal in a series of BrÃ,nsted acidic porous polymers: investigation of chemical and structural variations. Chemical Science, 2017, 8, 4399-4409.	3.7	89
36	High-field cross polarization NMR from laser-polarized xenon to a polymer surface. Journal of the American Chemical Society, 1993, 115, 8491-8492.	6.6	87

#	Article	IF	CITATIONS
37	Enantioselective Recognition of Ammonium Carbamates in a Chiral Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 16000-16012.	6.6	82
38	Optical Pumping in Solid State Nuclear Magnetic Resonance. The Journal of Physical Chemistry, 1996, 100, 13240-13250.	2.9	79
39	[sup 7]Li and [sup 31]P Magic Angle Spinning Nuclear Magnetic Resonance of LiFePO[sub 4]-Type Materials. Electrochemical and Solid-State Letters, 2002, 5, A95.	2.2	74
40	Effect of Confinement on Proton Transport Mechanisms in Block Copolymer/Ionic Liquid Membranes. Macromolecules, 2012, 45, 3112-3120.	2.2	74
41	Origin of enhanced water oxidation activity in an iridium single atom anchored on NiFe oxyhydroxide catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	71
42	Supertransferred Hyperfine Fields at7Li:Â Variable Temperature7Li NMR Studies of LiMn2O4-Based Spinels. Journal of Physical Chemistry B, 1998, 102, 10142-10149.	1.2	70
43	Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn ₂ (dobpdc). Journal of the American Chemical Society, 2018, 140, 1663-1673.	6.6	64
44	Hydrological limits to carbon capture and storage. Nature Sustainability, 2020, 3, 658-666.	11.5	63
45	Proton Hopping and Long-Range Transport in the Protic Ionic Liquid [Im][TFSI], Probed by Pulsed-Field Gradient NMR and Quasi-Elastic Neutron Scattering. Journal of Physical Chemistry B, 2012, 116, 8201-8209.	1.2	58
46	Cooperative Carbon Dioxide Adsorption in Alcoholamine―and Alkoxyalkylamineâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 19468-19477.	7.2	58
47	Diagnostic Analysis of Electrodes from High-Power Lithium-Ion Cells Cycled under Different Conditions. Journal of the Electrochemical Society, 2004, 151, A857.	1.3	54
48	Nuclear Magnetic Resonance and Voltammetry Studies of Carbon Monoxide Adsorption and Oxidation on a Carbon-Supported Platinum Fuel Cell Electrocatalyst. Journal of the Electrochemical Society, 2001, 148, A137.	1.3	53
49	Portable, low-cost NMR with laser-lathe lithography produced microcoils. Journal of Magnetic Resonance, 2007, 189, 121-129.	1.2	53
50	Overcoming Metastable CO ₂ Adsorption in a Bulky Diamine-Appended Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 15258-15270.	6.6	51
51	Towards more active biocatalysts in organic media: Increasing the activity of salt-activated enzymes. Biotechnology and Bioengineering, 2001, 75, 187-196.	1.7	50
52	Water dynamics and salt-activation of enzymes in organic media: Mechanistic implications revealed by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5706-5710.	3.3	49
53	Covalency Measurements via NMR in Lithium Metal Phosphates. Applied Magnetic Resonance, 2007, 32, 547-563.	0.6	49
54	Enhanced dynamic nuclear polarization via swept microwave frequency combs. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10576-10581.	3.3	45

#	Article	IF	CITATIONS
55	Temperature-dependent interchromophoric interaction in a fluorescent pyrene-based metal–organic framework. Chemical Science, 2019, 10, 6140-6148.	3.7	45
56	Influence of Substitution on the Structure and Electrochemistry of Layered Manganese Oxides. Chemistry of Materials, 2003, 15, 4456-4463.	3.2	44
57	Optical polarization of nuclear spins in GaAs. Physical Review B, 2004, 69, .	1.1	43
58	Optical polarization of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mmultiscripts> <mml:mtext> C </mml:mtext> <mml:mprescripts /> <mml:none /> <mml:mrow> <mml:mn> 13 </mml:mn> </mml:mrow> </mml:none </mml:mprescripts </mml:mmultiscripts> </mml:mrow> </mml:math> nuclei	1.1	43
59	in diamond through nitrogen vacancy centers. Physical Review B, 2010, 81, . Monte Carlo simulations of amorphous hydrogenated silicon thinâ€film growth. Journal of Applied Physics, 1987, 61, 2866-2873.	1.1	42
60	Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage. Journal of the American Chemical Society, 2021, 143, 17701-17707.	6.6	42
61	Quantitative Solid-State NMR Spectra of CO Adsorbed from Aqueous Solution onto a Commercial Electrode. Journal of the American Chemical Society, 1996, 118, 12250-12251.	6.6	41
62	Designing hierarchical nanoporous membranes for highly efficient gas adsorption and storage. Science Advances, 2020, 6, .	4.7	41
63	High-field cross polarization NMR from laser-polarized xenon to surface nuclei. Applied Magnetic Resonance, 1995, 8, 373-384.	0.6	40
64	Nuclear hyperpolarization in solids and the prospects for nuclear spintronics. Solid State Nuclear Magnetic Resonance, 2010, 37, 3-12.	1.5	40
65	Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 19054-19061.	4.0	40
66	Multinuclear NMR study of enzyme hydration in an organic solvent. , 1998, 57, 686-693.		39
67	Covalent Organic Frameworks with Irreversible Linkages via Reductive Cyclization of Imines. Journal of the American Chemical Society, 2022, 144, 9827-9835.	6.6	39
68	Dynamic Monte Carlo simulation of spinâ€lattice relaxation of quadrupolar nuclei in solids. Oxygenâ€17 in yttriaâ€doped ceria. Journal of Chemical Physics, 1993, 98, 7613-7620.	1.2	36
69	A [sup 7]Li NMR Study of Capacity Fade in Metal-Substituted Lithium Manganese Oxide Spinels. Journal of the Electrochemical Society, 2002, 149, A574.	1.3	36
70	In Situ Formation of Wilkinson-Type Hydroformylation Catalysts: Insights into the Structure, Stability, and Kinetics of Triphenylphosphine- and Xantphos-Modified Rh/SiO ₂ . ACS Catalysis, 2013, 3, 348-357.	5.5	36
71	Exâ€Situ NMR Relaxometry of Metal–Organic Frameworks for Rapid Surfaceâ€Area Screening. Angewandte Chemie - International Edition, 2013, 52, 12043-12046.	7.2	36
72	Improved Li ⁺ Transport in Polyacetal Electrolytes: Conductivity and Current Fraction in a Series of Polymers. ACS Energy Letters, 2021, 6, 1886-1891.	8.8	36

#	Article	IF	CITATIONS
73	Revealing Molecular Mechanisms in Hierarchical Nanoporous Carbon via Nuclear Magnetic Resonance. Matter, 2020, 3, 2093-2107.	5.0	34
74	NMR Spectroscopy Reveals Adsorbate Binding Sites in the Metal–Organic Framework UiO-66(Zr). Journal of Physical Chemistry C, 2018, 122, 8295-8305.	1.5	33
75	Selective, High-Temperature O ₂ Adsorption in Chemically Reduced, Redox-Active Iron-Pyrazolate Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 14627-14637.	6.6	32
76	Observation of an Intermediate to H ₂ Binding in a Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 14884-14894.	6.6	32
77	Active-Site Motions and Polarity Enhance Catalytic Turnover of Hydrated Subtilisin Dissolved in Organic Solvents. Journal of the American Chemical Society, 2009, 131, 4294-4300.	6.6	31
78	Hyperpolarized relaxometry based nuclear T1 noise spectroscopy in diamond. Nature Communications, 2019, 10, 5160.	5.8	31
79	Biocatalyst activity in nonaqueous environments correlates with centisecond-range protein motions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15672-15677.	3.3	30
80	Iron detection and remediation with a functionalized porous polymer applied to environmental water samples. Chemical Science, 2019, 10, 6651-6660.	3.7	30
81	Solution-processable and functionalizable ultra-high molecular weight polymers via topochemical synthesis. Nature Communications, 2021, 12, 6818.	5.8	30
82	Precise Control of Molecular Selfâ€Diffusion in Isoreticular and Multivariate Metalâ€Organic Frameworks. ChemPhysChem, 2020, 21, 32-35.	1.0	29
83	Influence of Pore Size on Carbon Dioxide Diffusion in Two Isoreticular Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 3570-3576.	3.2	29
84	Dynamics of frequency-swept nuclear spin optical pumping in powdered diamond at low magnetic fields. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2512-2520.	3.3	28
85	Dissolution of Lithium Metal in Poly(ethylene oxide). ACS Energy Letters, 2019, 4, 903-907.	8.8	28
86	Mechanism of Lithium Insertion into Magnesium Silicide. Journal of the Electrochemical Society, 2004, 151, A493.	1.3	26
87	Influence of magnetic field alignment and defect concentration on nitrogen-vacancy polarization in diamond. New Journal of Physics, 2016, 18, 013011.	1.2	26
88	Investigation of particle isolation in Li-ion battery electrodes using 7Li NMR spectroscopy. Electrochemistry Communications, 2005, 7, 1249-1251.	2.3	25
89	Translational and Rotational Motion of C8 Aromatics Adsorbed in Isotropic Porous Media (MOF-5): NMR Studies and MD Simulations. Journal of Physical Chemistry C, 2017, 121, 15456-15462.	1.5	25
90	Three-dimensional phase-encoded chemical shift MRI in the presence of inhomogeneous fields. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8845-8847.	3.3	24

#	Article	IF	CITATIONS
91	Nuclear spin temperature and magnetization transport in laser-enhanced NMR of bulk GaAs. Physical Review B, 2005, 71, .	1.1	24
92	Room temperature " <i>optical nanodiamond hyperpolarizer</i> â€! Physics, design, and operation. Review of Scientific Instruments, 2020, 91, 023106.	0.6	24
93	Properties of GaAs nanoclusters deposited by a femtosecond laser. Journal of Materials Science, 2002, 37, 3953-3958.	1.7	23
94	Employing a Narrow-Band-Gap Mediator in Ternary Solar Cells for Enhanced Photovoltaic Performance. ACS Applied Materials & Interfaces, 2020, 12, 16387-16393.	4.0	22
95	Modifying Li ⁺ and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion. Chemistry of Materials, 2021, 33, 4915-4926.	3.2	21
96	The Influence of Covalence on Capacity Retention in Metal-Substituted Spinels. Journal of the Electrochemical Society, 2002, 149, A1409.	1.3	20
97	Proton conduction and characterization of an La(PO3)3–Ca(PO3)2 glass–ceramic. Solid State Ionics, 2008, 178, 1811-1816.	1.3	20
98	Carbon-13 dynamic nuclear polarization in diamond via a microwave-free integrated cross effect. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18334-18340.	3.3	20
99	Structure and optical properties of plasmaâ€deposited fluorinated silicon nitride thin films. Journal of Applied Physics, 1988, 63, 2651-2659.	1.1	19
100	The phenomenology of optically pumped 13C NMR in diamond at 7.05 T: Room temperature polarization, orientation dependence, and the effect of defect concentration on polarization dynamics. Journal of Magnetic Resonance, 2016, 264, 154-162.	1.2	19
101	Combined Nuclear Magnetic Resonance and Molecular Dynamics Study of Methane Adsorption in M ₂ (dobdc) Metal–Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 12286-12295.	1.5	18
102	Amine Dynamics in Diamine-Appended Mg ₂ (dobpdc) Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 7044-7049.	2.1	18
103	Optically pumped spin polarization as a probe of many-body thermalization. Science Advances, 2020, 6, .	4.7	18
104	A [sup 7]Li Nuclear Magnetic Resonance Study of Metal-Substituted Lithium Manganese Oxide Spinels. Journal of the Electrochemical Society, 2001, 148, A951.	1.3	17
105	Following the structure and reactivity of Tuncbilek lignite during pyrolysis and hydrogenation. Fuel Processing Technology, 2016, 152, 266-273.	3.7	17
106	Electric-Field-Induced Spatially Dynamic Heterogeneity of Solvent Motion and Cation Transference in Electrolytes. Physical Review Letters, 2022, 128, .	2.9	17
107	Optically rewritable patterns of nuclear magnetization in gallium arsenide. Nature Communications, 2012, 3, 918.	5.8	16
108	Nanoporous Materials Can Tune the Critical Point of a Pure Substance. Angewandte Chemie - International Edition, 2015, 54, 14349-14352.	7.2	16

#	Article	IF	CITATIONS
109	Uncovering the Local Magnesium Environment in the Metal–Organic Framework Mg2(dobpdc) Using 25Mg NMR Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 19938-19945.	1.5	16
110	Silane pyrolysis in a piston reactor. AICHE Journal, 1989, 35, 793-802.	1.8	15
111	Single-input double-tuned circuit for double resonance nuclear magnetic resonance experiments. Review of Scientific Instruments, 1998, 69, 477-478.	0.6	15
112	Penetration depth model for optical alignment of nuclear spins in GaAs. Physical Review B, 2007, 76, .	1.1	15
113	Revisiting Anisotropic Diffusion of Carbon Dioxide in the Metal–Organic Framework Zn ₂ (dobpdc). Journal of Physical Chemistry C, 2018, 122, 15344-15351.	1.5	15
114	A simple model for the etching of photoresist with plasmaâ€generated reactants. Journal of Applied Physics, 1992, 72, 5081-5088.	1.1	14
115	Layered Nickel Oxide-Based Cathodes for Lithium Cells: Analysis of Performance Loss Mechanisms. Journal of the Electrochemical Society, 2005, 152, A1629.	1.3	14
116	NMR relaxation and exchange in metal–organic frameworks for surface area screening. Microporous and Mesoporous Materials, 2015, 205, 65-69.	2.2	14
117	Two-Electron-Spin Ratchets as a Platform for Microwave-Free Dynamic Nuclear Polarization of Arbitrary Material Targets. Nano Letters, 2019, 19, 2389-2396.	4.5	14
118	Solid-State NMR Studies of Lead-Containing Zeolites. Journal of Physical Chemistry B, 2001, 105, 2945-2950.	1.2	13
119	Background-free dual-mode optical and ¹³ C magnetic resonance imaging in diamond particles. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
120	Modeling 1H NMR transverse magnetization decay in polysiloxane-silica composites. Chemical Engineering Science, 2009, 64, 4684-4692.	1.9	12
121	An Electrochemical and XRD Study of Lithium Insertion into Mechanically Alloyed Magnesium Stannide. Journal of the Electrochemical Society, 2003, 150, A912.	1.3	11
122	Suppression of probe background signals via B1 field inhomogeneity. Journal of Magnetic Resonance, 2011, 209, 300-305.	1.2	11
123	Wide dynamic range magnetic field cycler: Harnessing quantum control at low and high fields. Review of Scientific Instruments, 2019, 90, 013112.	0.6	11
124	Utility of a tuneless plug and play transmission line probe. Journal of Magnetic Resonance, 2012, 221, 117-119.	1.2	10
125	Multinuclear NMR study of enzyme hydration in an organic solvent. Biotechnology and Bioengineering, 1998, 57, 686-93.	1.7	10
126	Characterization of Chemisorbed Species and Active Adsorption Sites in Mg–Al Mixed Metal Oxides for High-Temperature CO ₂ Capture. Chemistry of Materials, 2022, 34, 3893-3901.	3.2	10

#	Article	IF	CITATIONS
127	The use of a permanent magnet for water content measurements of wood chips. IEEE Transactions on Applied Superconductivity, 2002, 12, 975-978.	1.1	9
128	Characterizing electrocatalytic surfaces: Electrochemical and NMR studies of methanol and carbon monoxide on Pt/C. Electrochimica Acta, 2007, 53, 1365-1371.	2.6	9
129	Photocurrent-modulated optical nuclear polarization in bulk GaAs. Applied Physics Letters, 2005, 87, 232109.	1.5	8
130	Toward ex situ phase-encoded spectroscopic imaging. Concepts in Magnetic Resonance Part B, 2006, 29B, 137-144.	0.3	8
131	Solid state NMR investigation of Î ³ -irradiated composite siloxanes: Probing the silica/polysiloxane interface. Polymer Degradation and Stability, 2013, 98, 1362-1368.	2.7	8
132	Exâ€Situ NMR Relaxometry of Metal–Organic Frameworks for Rapid Surfaceâ€Area Screening. Angewandte Chemie, 2013, 125, 12265-12268.	1.6	8
133	Double Perovskite Structure Induced by Co Addition to PbTiO ₃ : Insights from DFT and Experimental Solid-State NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 27132-27139.	1.5	8
134	Enhanced Optical 13 C Hyperpolarization in Diamond Treated by Highâ€Temperature Rapid Thermal Annealing. Advanced Quantum Technologies, 2020, 3, 2000050.	1.8	8
135	A compact, high temperature nuclear magnetic resonance probe for use in a narrowâ€bore superconducting magnet. Review of Scientific Instruments, 1990, 61, 3368-3371.	0.6	7
136	Internal combustion. Nature, 2003, 426, 508-509.	13.7	7
137	Sulfur-Doped Aluminum-Substituted Manganese Oxide Spinels for Lithium-Ion Battery Applications. Journal of the Electrochemical Society, 2003, 150, A1060.	1.3	7
138	A Methodology for the Indirect Determination and Spatial Resolution of Shear Modulus of PDMSâ''Silica Elastomers. Macromolecules, 2008, 41, 1323-1327.	2.2	7
139	GaAs nanostructures and films deposited by a Cu-vapor laser. Applied Physics Letters, 1999, 75, 2208-2210.	1.5	6
140	Site-Dependent ¹³ C Chemical Shifts of CO Adsorbed on Pt Electrocatalysts. Journal of Physical Chemistry C, 2008, 112, 14702-14705.	1.5	6
141	Electro-oxidation kinetics of adsorbed CO on platinum electrocatalysts. Chemical Engineering Science, 2009, 64, 4765-4771.	1.9	6
142	Magnetic field induced delocalization in hybrid electron-nuclear spin ensembles. Physical Review B, 2021, 103, .	1.1	6
143	NMR Studies ofortho andmeta- fluorocinnamate-α-chymotrypsin complexes. Magnetic Resonance in Chemistry, 1979, 12, 352-356.	0.7	5
144	An effective stochastic excitation strategy for finding elusive NMR signals from solids. Solid State Nuclear Magnetic Resonance, 2006, 29, 199-203.	1.5	5

#	Article	IF	CITATIONS
145	Helicity independent optically-pumped nuclear magnetic resonance in gallium arsenide. Applied Physics Letters, 2011, 98, 112101.	1.5	5
146	Electrochemical characterization of hydrogen-bonding complexation between indoline and nitrogen containing bases. Journal of Electroanalytical Chemistry, 2013, 691, 57-65.	1.9	5
147	Cooperative Carbon Dioxide Adsorption in Alcoholamine―and Alkoxyalkylamineâ€Functionalized Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 19636-19645.	1.6	5
148	Anomalous etch rates of photoresist with argon dilution of CF4/O2plasma afterglows. Applied Physics Letters, 1991, 59, 1547-1549.	1.5	4
149	Cadmium Solid State NMR Studies of Cadmium-Exchanged Zeolites. Catalysis Letters, 2002, 80, 19-24.	1.4	4
150	Optical pumping of nuclear spin magnetization in GaAs/AlAs quantum wells of variable electron density. Solid State Communications, 2010, 150, 450-453.	0.9	4
151	Near-band-gap photoinduced nuclear spin dynamics in semi-insulating GaAs: Hyperfine- and quadrupolar-driven relaxation. Physical Review B, 2013, 88, .	1.1	4
152	A ²⁹ Si-NMR Investigation of Amorphous Hydrogenated Silicon Nitride. Materials Research Society Symposia Proceedings, 1986, 70, 337.	0.1	3
153	A nuclear magnetic resonance study of phosphorusâ€doped polycrystalline silicon. Journal of Applied Physics, 1987, 62, 3665-3670.	1.1	3
154	Nuclear spin temperature reversal via continuous radio-frequency driving. Physical Review B, 2021, 103, .	1.1	3
155	Exploring the Ion Solvation Environments in Solid-State Polymer Electrolytes through Free-Energy Sampling. Macromolecules, 2021, 54, 8590-8600.	2.2	3
156	Hydrogen Microstructure in Amorphous Semiconductors Materials Research Society Symposia Proceedings, 1987, 95, 171.	0.1	2
157	A simple method to study gas phase reactions. AICHE Journal, 1987, 33, 2037-2046.	1.8	2
158	Deposition Chemistry and Structure of Amorphous Fluorinated Silicon Nitride. Materials Research Society Symposia Proceedings, 1988, 118, 67.	0.1	2
159	â€~Ex situ' magnetic resonance volume imaging. Chemical Physics Letters, 2009, 467, 398-401.	1.2	2
160	Low-field microwave-mediated optical hyperpolarization in optically pumped diamond. Journal of Magnetic Resonance, 2021, 331, 107021.	1.2	2
161	A molecular perspective on carbon capture. Matter, 2022, 5, 1330-1333.	5.0	2
162	Multiple Quantum NMR Study of Hydrogen Clustering in Amorphous Silicon. Materials Research Society Symposia Proceedings, 1986, 70, 83.	0.1	1

#	Article	IF	CITATIONS
163	The Properties Of Phosphorus In Polycrystalline Silicon - A Nuclear Magnetic Resonance Study. Materials Research Society Symposia Proceedings, 1986, 71, 375.	0.1	1
164	Influence of Degree of Polymerization on Phase Separation and Rheology of A Thermotropic Liquid Crystal Polymer. Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics, 1987, 153, 271-280.	0.3	1
165	Identification of Chemical Growth Mechanisms in Amorphous Semiconductors. Materials Research Society Symposia Proceedings, 1987, 95, 209.	0.1	1
166	Carbon Local Bonding Configurations in Amorphous Hydrogenated Silicon-Carbon Alloys. Materials Research Society Symposia Proceedings, 1987, 95, 329.	0.1	1
167	Enhancement of Photoresist Etch Rates by Argon Metastables in a Plasma Afterglow Reactor. Materials Research Society Symposia Proceedings, 1991, 236, 199.	0.1	1
168	NMR Studies of Structural Phase Transitions in Random Copolymers. Macromolecules, 2003, 36, 477-485.	2.2	1
169	Anodic Oxidation of COads Derived from Methanol on Pt Electrocatalysts Linked to the Bonding Type and Adsorption Site. Electrochimica Acta, 2014, 135, 249-254.	2.6	1
170	Detection of the Order-to-Disorder Transition in Block Copolymer Electrolytes Using Quadrupolar 7Li NMR Splitting. ACS Macro Letters, 2019, 8, 107-112.	2.3	1
171	Imaging Sequences for Hyperpolarized Solids. Molecules, 2021, 26, 133.	1.7	1
172	Amorphous Hydrogenated Semiconductors. Materials Research Society Symposia Proceedings, 1986, 68, 157.	0.1	0
173	Nuclear Magnetic Resonance Studies of Deuterium in Silicon. Materials Research Society Symposia Proceedings, 1992, 262, 443.	0.1	0
174	High-Resolution NMR in Inhomogeneous Fields. , 2011, , 143-164.		0
175	10.1063/1.5131655.1. , 2020, , .		0