List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/440207/publications.pdf Version: 2024-02-01

Χιλο-Ιινι Ηε

#	Article	IF	CITATIONS
1	Homozygous variants in <i>AKAP3</i> induce asthenoteratozoospermia and male infertility. Journal of Medical Genetics, 2023, 60, 137-143.	1.5	9
2	Homozygous mutations in <i>CCDC34</i> cause male infertility with oligoasthenoteratozoospermia in humans and mice. Journal of Medical Genetics, 2022, 59, 710-718.	1.5	20
3	A homozygous lossâ€ofâ€function mutation in <scp><i>FBXO43</i></scp> causes human nonâ€obstructive azoospermia. Clinical Genetics, 2022, 101, 55-64.	1.0	8
4	Bi-allelic variants in DNAH10 cause asthenoteratozoospermia and male infertility. Journal of Assisted Reproduction and Genetics, 2022, 39, 251-259.	1.2	16
5	Bi-allelic variants in DNHD1 cause flagellar axoneme defects and asthenoteratozoospermia in humans and mice. American Journal of Human Genetics, 2022, 109, 157-171.	2.6	17
6	Homozygous mutation in SLO3 leads to severe asthenoteratozoospermia due to acrosome hypoplasia and mitochondrial sheath malformations. Reproductive Biology and Endocrinology, 2022, 20, 5.	1.4	11
7	Diet, microbe, and autism: Cause or consequence?. Cell Host and Microbe, 2022, 30, 5-7.	5.1	4
8	Homozygous SPAG6 variants can induce nonsyndromic asthenoteratozoospermia with severe MMAF. Reproductive Biology and Endocrinology, 2022, 20, 41.	1.4	12
9	Low sexual desire and hypoactive sexual desire disorder in Chinese women. International Journal of Gynecology and Obstetrics, 2022, 158, 478-480.	1.0	0
10	Bi-allelic variants in human TCTE1/DRC5 cause asthenospermia and male infertility. European Journal of Human Genetics, 2022, 30, 721-729.	1.4	8
11	Identification of deleterious variants in patients with male infertility due to idiopathic non-obstructive azoospermia. Reproductive Biology and Endocrinology, 2022, 20, 63.	1.4	11
12	Novel biallelic mutations in <i>SLC26A8</i> cause severe asthenozoospermia in humans owing to midpiece defects: Insights into a putative dominant genetic disease. Human Mutation, 2022, 43, 434-443.	1.1	11
13	Loss of function mutation in <i>DNAH7</i> induces male infertility associated with abnormalities of the sperm flagella and mitochondria in human. Clinical Genetics, 2022, 102, 130-135.	1.0	9
14	Altered mRNAs Profiles in the Testis of Patients With "Secondary Idiopathic Non-Obstructive Azoospermia― Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	1
15	Homozygous missense mutation in CCDC155 disrupts the transmembrane distribution of CCDC155 and SUN1, resulting in non-obstructive azoospermia and premature ovarian insufficiency in humans. Human Genetics, 2022, 141, 1795-1809.	1.8	9
16	Deleterious variants in X-linked CFAP47 induce asthenoteratozoospermia and primary male infertility. American Journal of Human Genetics, 2021, 108, 309-323.	2.6	74
17	Differences in the Gut Microbiome of Women With and Without Hypoactive Sexual Desire Disorder: Case Control Study. Journal of Medical Internet Research, 2021, 23, e25342.	2.1	7
18	Novel variants in DNAH9 lead to nonsyndromic severe asthenozoospermia. Reproductive Biology and Endocrinology, 2021, 19, 27.	1.4	16

#	Article	IF	CITATIONS
19	Sperm DNA integrity status is associated with DNA methylation signatures of imprinted genes and non-imprinted genes. Journal of Assisted Reproduction and Genetics, 2021, 38, 2041-2048.	1.2	12
20	Novel bi-allelic variants in DNAH2 cause severe asthenoteratozoospermia with multiple morphological abnormalities of the flagella. Reproductive BioMedicine Online, 2021, 42, 963-972.	1.1	19
21	Loss of DRC1 function leads to multiple morphological abnormalities of the sperm flagella and male infertility in human and mouse. Human Molecular Genetics, 2021, 30, 1996-2011.	1.4	26
22	Identification of Novel Biallelic TLE6 Variants in Female Infertility With Preimplantation Embryonic Lethality. Frontiers in Genetics, 2021, 12, 666136.	1.1	11
23	Novel Mutations in X-Linked, USP26-Induced Asthenoteratozoospermia and Male Infertility. Cells, 2021, 10, 1594.	1.8	6
24	Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse. Human Genetics, 2021, 140, 1367-1377.	1.8	23
25	Novel variants in helicase for meiosis 1 lead to male infertility due to non-obstructive azoospermia. Reproductive Biology and Endocrinology, 2021, 19, 129.	1.4	16
26	Bi-allelic mutations of DNAH10 cause primary male infertility with asthenoteratozoospermia in humans and mice. American Journal of Human Genetics, 2021, 108, 1466-1477.	2.6	50
27	Biâ€allelic mutations in <scp><i>MCIDA</i>S</scp> and <scp><i>CCNO</i></scp> cause human infertility associated with abnormal gamete transport. Clinical Genetics, 2021, 100, 731-742.	1.0	5
28	Homozygous mutations in <i>SPEF2</i> induce multiple morphological abnormalities of the sperm flagella and male infertility. Journal of Medical Genetics, 2020, 57, 31-37.	1.5	57
29	Biallelic mutations in <i>CFAP65</i> cause male infertility with multiple morphological abnormalities of the sperm flagella in humans and mice. Journal of Medical Genetics, 2020, 57, 89-95.	1.5	55
30	Artificial oocyte activation to improve reproductive outcomes in couples with various causes of infertility: a retrospective cohort study. Reproductive BioMedicine Online, 2020, 40, 501-509.	1.1	19
31	SARS-CoV-2 and the reproductive system: assessment of risk and recommendations for infection control in reproductive departments. Systems Biology in Reproductive Medicine, 2020, 66, 343-346.	1.0	5
32	Bi-allelic Loss-of-function Variants in CFAP58 Cause Flagellar Axoneme and Mitochondrial Sheath Defects and Asthenoteratozoospermia in Humans and Mice. American Journal of Human Genetics, 2020, 107, 514-526.	2.6	71
33	A Novel Missense Variant of TP63 Heterozygously Present in Split-Hand/Foot Malformation. BioMed Research International, 2020, 2020, 1-5.	0.9	0
34	Bi-allelic DNAH8 Variants Lead to Multiple Morphological Abnormalities of the Sperm Flagella and Primary Male Infertility. American Journal of Human Genetics, 2020, 107, 330-341.	2.6	111
35	Repeated triplets complicated by monochorionic diamniotic twins following assisted reproduction: a case report and literature review. BMC Pregnancy and Childbirth, 2020, 20, 373.	0.9	1
36	Patients with severe asthenoteratospermia carrying SPAG6 or RSPH3 mutations have a positive pregnancy outcome following intracytoplasmic sperm injection. Journal of Assisted Reproduction and Genetics, 2020, 37, 829-840.	1.2	30

#	Article	IF	CITATIONS
37	Homozygous mutations in <i>DZIP1</i> can induce asthenoteratospermia with severe MMAF. Journal of Medical Genetics, 2020, 57, 445-453.	1.5	57
38	A novel homozygous mutation in WDR19 induces disorganization of microtubules in sperm flagella and nonsyndromic asthenoteratospermia. Journal of Assisted Reproduction and Genetics, 2020, 37, 1431-1439.	1.2	35
39	A novel hemizygous loss-of-function mutation in ADGRG2 causes male infertility with congenital bilateral absence of the vas deferens. Journal of Assisted Reproduction and Genetics, 2020, 37, 1421-1429.	1.2	11
40	Novel compound heterozygous variants in dynein axonemal heavy chain 17 cause asthenoteratospermia with sperm flagellar defects. Journal of Genetics and Genomics, 2020, 47, 713-717.	1.7	6
41	A novel homozygous mutation in the meiotic gene leading to male infertility due to non-obstructive azoospermia. American Journal of Translational Research (discontinued), 2020, 12, 8185-8191.	0.0	7
42	Bi-allelic Mutations in TTC29 Cause Male Subfertility with Asthenoteratospermia in Humans and Mice. American Journal of Human Genetics, 2019, 105, 1168-1181.	2.6	62
43	Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. American Journal of Human Genetics, 2019, 104, 331-340.	2.6	113
44	Bi-allelic Mutations in TTC21A Induce Asthenoteratospermia in Humans and Mice. American Journal of Human Genetics, 2019, 104, 738-748.	2.6	103
45	Homozygous loss-of-function mutations in FSIP2 cause male infertility with asthenoteratospermia. Journal of Genetics and Genomics, 2019, 46, 53-56.	1.7	31
46	NovelCFAP43 andCFAP44 mutations cause male infertility with multiple morphological abnormalities of the sperm flagella (MMAF). Reproductive BioMedicine Online, 2019, 38, 769-778.	1.1	26
47	Novel homozygous <i>CFAP69</i> mutations in humans and mice cause severe asthenoteratospermia with multiple morphological abnormalities of the sperm flagella. Journal of Medical Genetics, 2019, 56, 96-103.	1.5	70
48	Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility. Journal of Human Genetics, 2019, 64, 49-54.	1.1	56
49	miR-323-3p regulates the steroidogenesis and cell apoptosis in polycystic ovary syndrome (PCOS) by targeting IGF-1. Gene, 2019, 683, 87-100.	1.0	45
50	Mutations in PMFBP1 Cause Acephalic Spermatozoa Syndrome. American Journal of Human Genetics, 2018, 103, 188-199.	2.6	81
51	Retrospective Study to Compare Frozen-Thawed Embryo Transfer with Fresh Embryo Transfer on Pregnancy Outcome Following Intracytoplasmic Sperm Injection for Male Infertility. Medical Science Monitor, 2018, 24, 2668-2674.	0.5	9
52	Prevalence and risk factors of monochorionic diamniotic twinning after assisted reproduction: A six-year experience base on a large cohort of pregnancies. PLoS ONE, 2017, 12, e0186813.	1.1	21
53	Biallelic SUN5 Mutations Cause Autosomal-Recessive Acephalic Spermatozoa Syndrome. American Journal of Human Genetics, 2016, 99, 942-949.	2.6	113
54	Dehydroepiandrosterone plus climen supplementation shows better effects than dehydroepiandrosterone alone on infertility patients with diminished ovarian reserve of low-FSH level undergoing in-vitro fertilization cycles: a randomized controlled trial. Reproductive Biology and Endocrinology, 2016, 14, 9.	1.4	3

#	Article	IF	CITATIONS
55	Genetic analysis of DACT1 in 100 Chinese Han women with Müllerian duct anomalies. Reproductive BioMedicine Online, 2016, 32, 420-426.	1.1	3
56	Systematic Evaluation of Genetic Variants for Polycystic Ovary Syndrome in a Chinese Population. PLoS ONE, 2015, 10, e0140695.	1.1	17
57	Association of genetic variants in SOHLH1 and SOHLH2 with non-obstructive azoospermia risk in the Chinese population. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2015, 184, 48-52.	0.5	13
58	Differential Expression of Long Noncoding RNAs in Human Cumulus Cells Related to Embryo Developmental Potential: A Microarray Analysis. Reproductive Sciences, 2015, 22, 672-678.	1.1	42
59	Association of single nucleotide polymorphisms in the USF1, GTF2A1L and OR2W3 genes with non-obstructive azoospermia in the Chinese population. Journal of Assisted Reproduction and Genetics, 2015, 32, 95-101.	1.2	3
60	Genetic association study of <i>RNF8</i> and <i>BRDT</i> variants with non-obstructive azoospermia in the Chinese Han population. Systems Biology in Reproductive Medicine, 2015, 61, 26-31.	1.0	5
61	CREM Variants rs4934540 and rs2295415 Conferred Susceptibility to Nonobstructive Azoospermia Risk in the Chinese Population1. Biology of Reproduction, 2014, 91, 52.	1.2	5
62	Genetic study of Hormad1 and Hormad2 with non-obstructive azoospermia patients in the male Chinese population. Journal of Assisted Reproduction and Genetics, 2014, 31, 873-879.	1.2	2
63	Genetic Variants in TEX15 Gene Conferred Susceptibility to Spermatogenic Failure in the Chinese Han Population. Reproductive Sciences, 2012, 19, 1190-1196.	1.1	25
64	PRM1 variant rs35576928 (Arg>Ser) is associated with defective spermatogenesis in the Chinese Han population. Reproductive BioMedicine Online, 2012, 25, 627-634.	1.1	29
65	Non-invasive Molecular Biomarkers for Predicting Outcomes of Micro-TESE in Patients with Idiopathic Non-obstructive Azoospermia. Expert Reviews in Molecular Medicine, 0, , 1-25.	1.6	2