Diego Abalos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4401611/publications.pdf Version: 2024-02-01

DIECO ARALOS

#	Article	IF	CITATIONS
1	Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agriculture, Ecosystems and Environment, 2014, 189, 136-144.	5.3	442
2	Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 2017, 12, 053001.	5.2	436
3	Biochar effects on methane emissions from soils: A meta-analysis. Soil Biology and Biochemistry, 2016, 101, 251-258.	8.8	259
4	Globally important nitrous oxide emissions from croplands induced by freeze–thaw cycles. Nature Geoscience, 2017, 10, 279-283.	12.9	200
5	Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems and Environment, 2017, 238, 5-24.	5.3	193
6	Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 2017, 238, 25-35.	5.3	178
7	Management of irrigation frequency and nitrogen fertilization to mitigate GHG and NO emissions from drip-fertigated crops. Science of the Total Environment, 2014, 490, 880-888.	8.0	111
8	Effectiveness of urease inhibition on the abatement of ammonia, nitrous oxide and nitric oxide emissions in a non-irrigated Mediterranean barley field. Chemosphere, 2012, 89, 310-318.	8.2	103
9	Plant species identity surpasses species richness as a key driver of <scp><scp>N₂O</scp></scp> emissions from grassland. Global Change Biology, 2014, 20, 265-275.	9.5	100
10	Role of maize stover incorporation on nitrogen oxide emissions in a non-irrigated Mediterranean barley field. Plant and Soil, 2013, 364, 357-371.	3.7	76
11	What plant functional traits can reduce nitrous oxide emissions from intensively managed grasslands?. Global Change Biology, 2018, 24, e248-e258.	9.5	67
12	Yield-scaled mitigation of ammonia emission from N fertilization: the Spanish case. Environmental Research Letters, 2014, 9, 125005.	5.2	65
13	Micrometeorological measurements over 3Âyears reveal differences in N ₂ O emissions between annual and perennial crops. Global Change Biology, 2016, 22, 1244-1255.	9.5	65
14	Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences, 2016, 13, 5245-5257.	3.3	63
15	Improving fertilizer management in the U.S. and Canada for N2O mitigation: Understanding potential positive and negative side-effects on corn yields. Agriculture, Ecosystems and Environment, 2016, 221, 214-221.	5.3	60
16	Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N ₂ O emission. Global Change Biology, 2022, 28, 2158-2168.	9.5	54
17	Denitrification as a source of nitric oxide emissions from incubated soil cores from a UK grassland soil. Soil Biology and Biochemistry, 2016, 95, 1-7.	8.8	53
18	Combining no-till with rye (Secale cereale L.) cover crop mitigates nitrous oxide emissions without decreasing yield. Soil and Tillage Research, 2020, 196, 104442.	5.6	43

DIEGO ABALOS

#	Article	IF	CITATIONS
19	The use of furfural as a metabolic inhibitor for reducing the alcohol content of model wines. European Food Research and Technology, 2011, 232, 663-669.	3.3	42
20	No tillage and liming reduce greenhouse gas emissions from poorly drained agricultural soils in Mediterranean regions. Science of the Total Environment, 2016, 566-567, 512-520.	8.0	41
21	Soil microbial communities as potential regulators of in situ N2O fluxes in annual and perennial cropping systems. Soil Biology and Biochemistry, 2016, 103, 262-273.	8.8	39
22	Scenario analysis of fertilizer management practices for N2O mitigation from corn systems in Canada. Science of the Total Environment, 2016, 573, 356-365.	8.0	38
23	Plant traitâ€based approaches to improve nitrogen cycling in agroecosystems. Journal of Applied Ecology, 2019, 56, 2454-2466.	4.0	36
24	Rainfall amount and distribution regulate DMPP effects on nitrous oxide emissions under semiarid Mediterranean conditions. Agriculture, Ecosystems and Environment, 2017, 238, 36-45.	5.3	30
25	Trade-offs in greenhouse gas emissions across a liming-induced gradient of soil pH: Role of microbial structure and functioning. Soil Biology and Biochemistry, 2020, 150, 108006.	8.8	30
26	Predicting field N2O emissions from crop residues based on their biochemical composition: A meta-analytical approach. Science of the Total Environment, 2022, 812, 152532.	8.0	30
27	A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Science of the Total Environment, 2022, 828, 154388.	8.0	29
28	"Hot spots―of N and C impact nitric oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil. Geoderma, 2017, 305, 336-345.	5.1	28
29	Soil and temperature effects on nitrification and denitrification modified N2O mitigation by 3,4-dimethylpyrazole phosphate. Soil Biology and Biochemistry, 2021, 157, 108224.	8.8	28
30	Soil moisture determines the effectiveness of two urease inhibitors to decrease N2O emission. Mitigation and Adaptation Strategies for Global Change, 2016, 21, 1131.	2.1	27
31	Towards optimal use of phosphorus fertiliser. Scientific Reports, 2020, 10, 17804.	3.3	27
32	Climate change and N2O emissions from South West England grasslands: A modelling approach. Atmospheric Environment, 2016, 132, 249-257.	4.1	25
33	Nitrate leaching and nitrous oxide emissions from maize after grass-clover on a coarse sandy soil: Mitigation potentials of 3,4-dimethylpyrazole phosphate (DMPP). Journal of Environmental Management, 2020, 260, 110165.	7.8	25
34	Manipulating plant community composition to steer efficient N ycling in intensively managed grasslands. Journal of Applied Ecology, 2021, 58, 167-180.	4.0	14
35	Plant community flood resilience in intensively managed grasslands and the role of the plant economic spectrum. Journal of Applied Ecology, 2020, 57, 1524-1534.	4.0	13
36	Strong potential of slurry application timing and method to reduce N losses in a permanent grassland. Agriculture, Ecosystems and Environment, 2021, 311, 107329.	5.3	13

DIEGO ABALOS

#	Article	IF	CITATIONS
37	Can flooding-induced greenhouse gas emissions be mitigated by trait-based plant species choice?. Science of the Total Environment, 2020, 727, 138476.	8.0	12
38	Nitrous oxide emissions from oilseed rape cultivation were unaffected by flash pyrolysis biochar of different type, rate and field ageing. Science of the Total Environment, 2020, 724, 138140.	8.0	11
39	Plant traits of grass and legume species for flood resilience and N ₂ O mitigation. Functional Ecology, 2021, 35, 2205-2218.	3.6	6
40	Potential for the adoption of measures to reduce N2O emissions from crop residues in Denmark. Science of the Total Environment, 2022, 835, 155510.	8.0	4
41	Country Case Studies. , 2015, , 169-231.		0