
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4401446/publications.pdf Version: 2024-02-01

FUCLEWIS

#	Article	IF	CITATIONS
1	The lipid ties of α1-antitrypsin: Structural and functional aspects. Cellular Immunology, 2022, 375, 104528.	1.4	2
2	Accelerated Wound Border Closure Using a Microemulsion Containing Non-Inhibitory Recombinant α1-Antitrypsin. International Journal of Molecular Sciences, 2022, 23, 7364.	1.8	1
3	Differential signaling patterns of stimulated bone marrow-derived dendritic cells under α1-antitrypsin-enriched conditions. Cellular Immunology, 2021, 361, 104281.	1.4	1
4	GLUT4-overexpressing engineered muscle constructs as a therapeutic platform to normalize glycemia in diabetic mice. Science Advances, 2021, 7, eabg3947.	4.7	8
5	Development of anti-inflammatory peptidomimetics based on the structure of human alpha1-antitrypsin. European Journal of Medicinal Chemistry, 2021, 228, 113969.	2.6	2
6	Toll-like receptor 3 (TLR3) variant and NLRP12 mutation confer susceptibility to a complex clinical presentation. Clinical Immunology, 2020, 212, 108249.	1.4	6
7	Immunosuppressive Drugs Alter α1-Antitrypsin Production in Hepatocytes: Implications for Epithelial Gap Repair. Biology of Blood and Marrow Transplantation, 2020, 26, 625-633.	2.0	2
8	Distinct anti-inflammatory properties of alpha1-antitrypsin and corticosteroids reveal unique underlying mechanisms of action. Cellular Immunology, 2020, 356, 104177.	1.4	15
9	In Vivo Electroporation-Mediated, Intrahepatic Alpha1 Antitrypsin Gene Transfer Reduces Pulmonary Emphysema in Pallid Mice. Pharmaceutics, 2020, 12, 793.	2.0	1
10	Trauma-induced vestibular dysfunction: Possible functional repair under α1-antitrypsin-rich conditions. Cellular Immunology, 2020, 356, 104150.	1.4	1
11	Endogenous α1â€antitrypsin levels in the perilymphatic fluid correlates with severity of hearing loss. Clinical Otolaryngology, 2020, 45, 495-499.	0.6	4
12	Application of directed evolution and back-to-consensus algorithms to human alpha1-antitrypsin leads to diminished anti-protease activity and augmented anti-inflammatory activities. Cellular Immunology, 2020, 355, 104135.	1.4	2
13	MitoTimer-based high-content screen identifies two chemically-related benzothiophene derivatives that enhance basal mitophagy. Biochemical Journal, 2020, 477, 461-475.	1.7	11
14	S-Nitrosylation of α1-Antitrypsin Triggers Macrophages Toward Inflammatory Phenotype and Enhances Intra-Cellular Bacteria Elimination. Frontiers in Immunology, 2019, 10, 590.	2.2	13
15	Enhanced Survival and Accelerated Perfusion of Skin Flap to Recipient Site Following Administration of Human α1-Antitrypsin in Murine Models. Advances in Wound Care, 2019, 8, 281-290.	2.6	10
16	A Phase II, Double-Blind, Randomized, Placebo-Controlled, Multicenter Study Evaluating the Efficacy and Safety of Alpha-1 Antitrypsin (AAT) (Glassia®) in the Treatment of Recent-Onset Type 1 Diabetes. International Journal of Molecular Sciences, 2019, 20, 6032.	1.8	15
17	α1-Antitrypsin infusion for treatment of steroid-resistant acute graft-versus-host disease. Blood, 2018, 131, 1372-1379.	0.6	81
18	Point Mutation of a Non-Elastase-Binding Site in Human α1-Antitrypsin Alters Its Anti-Inflammatory Properties. Frontiers in Immunology, 2018, 9, 759.	2.2	11

#	Article	IF	CITATIONS
19	Obesity, diabetes and zinc: A workshop promoting knowledge and collaboration between the UK and Israel, november 28–30, 2016 – Israel. Journal of Trace Elements in Medicine and Biology, 2018, 49, 79-85.	1.5	1
20	Alpha-1 Antitrypsin Substitution for Extrapulmonary Conditions in Alpha-1 Antitrypsin Deficient Patients. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2018, 5, 267-276.	0.5	10
21	Astaxanthin-based polymers as new antimicrobial compounds. Polymer Chemistry, 2017, 8, 4182-4189.	1.9	28
22	Exploration ofα1-Antitrypsin Treatment Protocol for Islet Transplantation: Dosing Plan and Route of Administration. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 482-490.	1.3	10
23	Correspondence of Neutralizing Humoral Immunity and CD4 T Cell Responses in Long Recovered Sudan Virus Survivors. Viruses, 2016, 8, 133.	1.5	8
24	Context-Specific and Immune Cell-Dependent Antitumor Activities of $\hat{I}\pm 1$ -Antitrypsin. Frontiers in Immunology, 2016, 7, 559.	2.2	16
25	Alpha-1 antitrypsin therapy is safe and well tolerated in children and adolescents with recent onset type 1 diabetes mellitus. Pediatric Diabetes, 2016, 17, 351-359.	1.2	36
26	Diluted serum from calorieâ€restricted animals promotes mitochondrial βâ€cell adaptations and protect against glucolipotoxicity. FEBS Journal, 2016, 283, 822-833.	2.2	25
27	Therapeutic compositions and uses of alpha1-antitrypsin: a patent review (2012 – 2015). Expert Opinion on Therapeutic Patents, 2016, 26, 581-589.	2.4	11
28	Experimental Support for the Ecoimmunity Theory: Distinct Phenotypes of Nonlymphocytic Cells in SCID and Wild-Type Mice. Cell Transplantation, 2016, 25, 1575-1588.	1.2	1
29	M2-like macrophages and tumor-associated macrophages: overlapping and distinguishing properties en route to a safe therapeutic potential. Integrative Cancer Science and Therapeutics, 2016, 3, .	0.1	6
30	Alpha1-antitrypsin, an endogenous immunoregulatory molecule: distinction between local and systemic effects on tumor immunology. Integrative Cancer Science and Therapeutics, 2016, 2, .	0.1	1
31	<i>α</i> 1â€Antitrypsin modifies general natural killer cell interactions with dendritic cells and specific interactions with islet <i>β</i> ells in favour of protection from autoimmune diabetes. Immunology, 2015, 144, 530-539.	2.0	26
32	T Helper Subsets, Peripheral Plasticity, and the Acute Phase Protein,α1-Antitrypsin. BioMed Research International, 2015, 2015, 1-14.	0.9	16
33	A crosstalk between Na+ channels, Na+/K+ pump and mitochondrial Na+ transporters controls glucose-dependent cytosolic and mitochondrial Na+ signals. Cell Calcium, 2015, 57, 69-75.	1.1	26
34	Immune Memory to Sudan Virus: Comparison between Two Separate Disease Outbreaks. Viruses, 2015, 7, 37-51.	1.5	20
35	IL-1 Receptor Antagonist Chimeric Protein: Context-Specific and Inflammation-Restricted Activation. Journal of Immunology, 2015, 195, 1705-1712.	0.4	8
36	Diminished activity of circulatingα1-antitrypsin is associated with pre-gestational isolated obesity. Journal of Maternal-Fetal and Neonatal Medicine, 2015, 28, 500-503.	0.7	5

#	Article	IF	CITATIONS
37	Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor. Biochemical Pharmacology, 2015, 98, 110-118.	2.0	33
38	Acute-phase protein $\hat{l}\pm 1$ -anti-trypsin: diverting injurious innate and adaptive immune responses from non-authentic threats. Clinical and Experimental Immunology, 2015, 179, 161-172.	1.1	88
39	Acute Phase Protein α1-Antitrypsin Reduces the Bacterial Burden in Mice by Selective Modulation of Innate Cell Responses. Journal of Infectious Diseases, 2015, 211, 1489-1498.	1.9	54
40	Regulation of Autophagy by α1-Antitrypsin: "A Foe of a Foe Is a Friend― Molecular Medicine, 2014, 20, 417-426.	1.9	10
41	α1-Antitrypsin Therapy Downregulates Toll-Like Receptor-Induced IL-1β Responses in Monocytes and Myeloid Dendritic Cells and May Improve Islet Function in Recently Diagnosed Patients With Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1418-E1426.	1.8	68
42	Mechanistic Evidence in Support of Alpha1-Antitrypsin as a Therapeutic Approach for Type 1 Diabetes. Journal of Diabetes Science and Technology, 2014, 8, 1193-1203.	1.3	27
43	α1-antitrypsin increases interleukin-1 receptor antagonist production during pancreatic islet graft transplantation. Cellular and Molecular Immunology, 2014, 11, 377-386.	4.8	47
44	IL-37 protects against obesity-induced inflammation and insulin resistance. Nature Communications, 2014, 5, 4711.	5.8	186
45	Pancreatic βâ€cell Na ⁺ channels control global Ca ²⁺ signaling and oxidative metabolism by inducing Na ⁺ and Ca ²⁺ responses that are propagated into mitochondria. FASEB Journal, 2014, 28, 3301-3312.	0.2	49
46	Low levels of circulating alpha-1 antitrypsin are associated with spontaneous abortions. Journal of Maternal-Fetal and Neonatal Medicine, 2013, 26, 1782-1787.	0.7	18
47	Human Alpha-1-Antitrypsin Modifies B Lymphocyte Responses During Allograft Transplantation. Immunology, 2013, 140, n/a-n/a.	2.0	22
48	Persistent Immune Responses after Ebola Virus Infection. New England Journal of Medicine, 2013, 369, 492-493.	13.9	44
49	Anti-inflammatory and immunomodulatory properties of α1-antitrypsin without inhibition of elastase. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15007-15012.	3.3	227
50	Human α1-Antitrypsin Binds to Heat-Shock Protein gp96 and Protects from Endogenous gp96-Mediated Injury In vivo. Frontiers in Immunology, 2013, 4, 320.	2.2	25
51	Interleukin-1β Regulates Fat-Liver Crosstalk in Obesity by Auto-Paracrine Modulation of Adipose Tissue Inflammation and Expandability. PLoS ONE, 2013, 8, e53626.	1.1	122
52	The Efficacy of an Immunoisolating Membrane System for Islet Xenotransplantation in Minipigs. PLoS ONE, 2013, 8, e70150.	1.1	99
53	Revascularization of Pancreatic Islet Allografts is Enhanced by α-1-Antitrypsin under Anti-Inflammatory Conditions. Cell Transplantation, 2013, 22, 2119-2133.	1.2	28
54	Pancreatic Islet Xenograft Survival in Mice Is Extended by a Combination of Alpha-1-Antitrypsin and Single-Dose Anti-CD4/CD8 Therapy. PLoS ONE, 2013, 8, e63625.	1.1	32

#	Article	IF	CITATIONS
55	Lower circulation levels and activity of α-1 Antitrypsin in pregnant women with severe preeclampsia. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 2667-2670.	0.7	23
56	Alpha-1-antitrypsin monotherapy reduces graft-versus-host disease after experimental allogeneic bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 564-569.	3.3	125
57	α-1 Antitrypsin Promotes Semimature, IL-10–Producing and Readily Migrating Tolerogenic Dendritic Cells. Journal of Immunology, 2012, 189, 146-153.	0.4	67
58	α1-Antitrypsin insufficiency is a possible contributor to preterm premature rupture of membranes. Journal of Maternal-Fetal and Neonatal Medicine, 2012, 25, 934-937.	0.7	12
59	The Mitochondrial Na+/Ca2+ Exchanger Upregulates Glucose Dependent Ca2+ Signalling Linked to Insulin Secretion. PLoS ONE, 2012, 7, e46649.	1.1	64
60	Expanding the Clinical Indications for $\hat{l}\pm 1$ -Antitrypsin Therapy. Molecular Medicine, 2012, 18, 957-970.	1.9	145
61	Alpha-1 antitrypsin inhibits caspase-1 and protects from acute myocardial ischemia–reperfusion injury. Journal of Molecular and Cellular Cardiology, 2011, 51, 244-251.	0.9	127
62	α-1-Antitrypsin Gene Delivery Reduces Inflammation, Increases T-Regulatory Cell Population Size and Prevents Islet Allograft Rejection. Molecular Medicine, 2011, 17, 1000-1011.	1.9	57
63	The Oral Histone Deacetylase Inhibitor ITF2357 Reduces Cytokines and Protects Islet β Cells In Vivo and In Vitro. Molecular Medicine, 2011, 17, 369-377.	1.9	99
64	Sustained expression of circulating human alpha-1 antitrypsin reduces inflammation, increases CD4+FoxP3+ Treg cell population and prevents signs of experimental autoimmune encephalomyelitis in mice. Metabolic Brain Disease, 2011, 26, 107-113.	1.4	53
65	IL-1 family nomenclature. Nature Immunology, 2010, 11, 973-973.	7.0	294
66	Association Between Renal Injury and Reduced Interleukin-15 and Interleukin-15 Receptor Levels in Acute Kidney Injury. Journal of Interferon and Cytokine Research, 2010, 30, 1-8.	0.5	22
67	Elimination of Negative Feedback Control Mechanisms Along the Insulin Signaling Pathway Improves Â-Cell Function Under Stress. Diabetes, 2010, 59, 2188-2197.	0.3	18
68	Interleukin-1β May Mediate Insulin Resistance in Liver-Derived Cells in Response to Adipocyte Inflammation. Endocrinology, 2010, 151, 4247-4256.	1.4	97
69	The unique hypusine modification of eIF5A promotes islet β cell inflammation and dysfunction in mice. Journal of Clinical Investigation, 2010, 120, 2156-2170.	3.9	144
70	Aortic Ring Assay. Journal of Visualized Experiments, 2009, , .	0.2	33
71	α1-Antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16236-16241.	3.3	183
72	Interleukin-32 induces the differentiation of monocytes into macrophage-like cells. Proceedings of the United States of America, 2008, 105, 3515-3520.	3.3	152

#	Article	IF	CITATIONS
73	Erythropoietin Prevents Dialysis Fluid-Induced Apoptosis of Mesothelial Cells. Peritoneal Dialysis International, 2008, 28, 648-654.	1.1	7
74	Anti-Inflammatory Preconditioning by Agonists of Adenosine A1 Receptor. PLoS ONE, 2008, 3, e2107.	1.1	56
75	Erythropoietin prevents dialysis fluid-induced apoptosis of mesothelial cells. Peritoneal Dialysis International, 2008, 28, 648-54.	1.1	2
76	Cisplatin-Induced Acute Renal Failure Is Associated with an Increase in the Cytokines Interleukin (IL)-1β, IL-18, IL-6, and Neutrophil Infiltration in the Kidney. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 8-15.	1.3	364
77	Involvement of graft-derived interleukin-15 in islet allograft rejection in miceâ~†. Cytokine, 2006, 34, 106-113.	1.4	6
78	Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nature Medicine, 2006, 12, 650-656.	15.2	360
79	Mycobacterium tuberculosis Induces Interleukin-32 Production through a Caspase- 1/IL-18/Interferon-Î ³ -Dependent Mechanism. PLoS Medicine, 2006, 3, e277.	3.9	186
80	Responses of IL-18- and IL-18 receptor-deficient pancreatic islets with convergence of positive and negative signals for the IL-18 receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16852-16857.	3.3	46
81	The Histone Deacetylase Inhibitor ITF2357 Reduces Production of Pro-Inflammatory Cytokines In Vitro and Systemic Inflammation In Vivo. Molecular Medicine, 2005, 11, 1-15.	1.9	315
82	Â1-Antitrypsin monotherapy prolongs islet allograft survival in mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12153-12158.	3.3	175
83	Renal cells express a functional interleukin-15 receptor. Nephrology Dialysis Transplantation, 2005, 20, 516-523.	0.4	26
84	Differences in signaling pathways by IL-1Â and IL-18. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8815-8820.	3.3	208
85	Major involvement of CD40 in the regulation of chemokine secretion from human peritoneal mesothelial cells. Kidney International, 2003, 64, 2064-2071.	2.6	13
86	INTERLEUKIN-15 IS THE MAIN MEDIATOR OF LYMPHOCYTE PROLIFERATION IN CULTURES MIXED WITH HUMAN KIDNEY TUBULAR EPITHELIAL CELLS1. Transplantation, 2001, 72, 886-890.	0.5	15
87	The In Vitro Effects of Ketamine at Large Concentrations Can Be Attributed to a Nonspecific Cytostatic Effect. Anesthesia and Analgesia, 2001, 92, 927-929.	1.1	18
88	Gel clot LAL assay in the initial management of peritoneal dialysis patients with peritonitis: a retrospective study. Nephrology Dialysis Transplantation, 2000, 15, 680-683.	0.4	13