List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4401162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tuning Lithiophilicity and Stability of 3D Conductive Scaffold via Covalent Agâ€S Bond for Highâ€Performance Lithium Metal Anode. Energy and Environmental Materials, 2023, 6, .	12.8	8
2	Designing Advanced Aqueous Zincâ€ion Batteries: Principles, Strategies, and Perspectives. Energy and Environmental Materials, 2022, 5, 823-851.	12.8	69
3	Emerging Carbonyl Polymers as Sustainable Electrode Materials for Lithiumâ€Free Metalâ€Ion Batteries. Energy and Environmental Materials, 2022, 5, 1037-1059.	12.8	18
4	Defect-Engineered 3D hierarchical NiMo3S4 nanoflowers as bifunctional electrocatalyst for overall water splitting. Journal of Colloid and Interface Science, 2022, 607, 1876-1887.	9.4	40
5	An Exfoliation–Evaporation Strategy To Regulate N Coordination Number of Co Single-Atom Catalysts for High-Performance Lithium–Sulfur Batteries. , 2022, 4, 1-10.		35
6	Defectâ€ S electivity and "Orderâ€inâ€Disorder―Engineering in Carbon for Durable and Fast Potassium Storage. Advanced Materials, 2022, 34, e2108621.	21.0	96
7	Rational construction of hierarchical porous FeP nanorod arrays encapsulated in polypyrrole for efficient and durable hydrogen evolution reaction. Chemical Engineering Journal, 2022, 433, 133643.	12.7	25
8	Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. Journal of Colloid and Interface Science, 2022, 611, 317-326.	9.4	22
9	Topotactic Epitaxy Self-Assembly of Potassium Manganese Hexacyanoferrate Superstructures for Highly Reversible Sodium-Ion Batteries. ACS Nano, 2022, 16, 453-461.	14.6	24
10	Polysulfide Regulation by Hypervalent Iodine Compounds for Durable and Sustainable Lithium–Sulfur Battery. Small, 2022, 18, e2106716.	10.0	14
11	Defectâ€Selectivity and "Orderâ€inâ€Disorder―Engineering in Carbon for Durable and Fast Potassium Storage (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	6
12	Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Materials Today, 2022, 54, 110-152.	14.2	66
13	Tungsten disulfide-reduced GO/CNT aerogel: a tuned interlayer spacing anode for efficient water desalination. Journal of Materials Chemistry A, 2021, 9, 10758-10768.	10.3	22
14	Recent advances in carbon-shell-based nanostructures for advanced Li/Na metal batteries. Journal of Materials Chemistry A, 2021, 9, 6070-6088.	10.3	21
15	A membrane-less desalination battery with ultrahigh energy efficiency. Journal of Materials Chemistry A, 2021, 9, 7216-7226.	10.3	10
16	Porosity Engineering of MXene Membrane towards Polysulfide Inhibition and Fast Lithium Ion Transportation for Lithium–Sulfur Batteries. Small, 2021, 17, e2007442.	10.0	57
17	Guest-species-incorporation in manganese/vanadium-based oxides: Towards high performance aqueous zinc-ion batteries. Nano Energy, 2021, 85, 105969.	16.0	71
18	Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage. Journal of Colloid and Interface Science, 2021, 594, 531-539.	9.4	11

#	Article	IF	CITATIONS
19	Conformal coating of lithium-zinc alloy on 3D conducting scaffold for high areal capacity dendrite-free lithium metal batteries. Carbon, 2021, 181, 99-106.	10.3	19
20	Recent Advances in Heterostructure Engineering for Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003689.	19.5	269
21	Cubic Spinel XIn ₂ S ₄ (X = Fe, Co, Mn): A New Type of Anode Material for Superfast and Ultrastable Naâ€Ion Storage. Advanced Energy Materials, 2021, 11, 2102137.	19.5	23
22	Enhanced sodium storage kinetics by volume regulation and surface engineering <i>via</i> rationally designed hierarchical porous FeP@C/rGO. Nanoscale, 2020, 12, 4341-4351.	5.6	80
23	Constructing stress-release layer on Fe7Se8-based composite for highly stable sodium-storage. Nano Energy, 2020, 69, 104389.	16.0	49
24	Controllable Synthesis of Twoâ€Dimensional Molybdenum Disulfide (MoS ₂) for Energy‣torage Applications. ChemSusChem, 2020, 13, 1379-1391.	6.8	60
25	A Selective Reduction Approach to Construct Robust Cu1.81S Truss Structures for High-Performance Sodium Storage. Matter, 2020, 2, 428-439.	10.0	35
26	Stepwise Intercalation-Conversion-Intercalation Sodiation Mechanism in CuInS ₂ Prompting Sodium Storage Performance. ACS Energy Letters, 2020, 5, 3725-3732.	17.4	33
27	Boosting Zn-Ion Storage Performance of Bronze-Type VO ₂ <i>via</i> Ni-Mediated Electronic Structure Engineering. ACS Applied Materials & Interfaces, 2020, 12, 36110-36118.	8.0	70
28	An energy efficient bi-functional electrode for continuous cation-selective capacitive deionization. Nanoscale, 2020, 12, 22917-22927.	5.6	12
29	Decoding of Oxygen Network Distortion in a Layered High-Rate Anode by <i>In Situ</i> Investigation of a Single Microelectrode. ACS Nano, 2020, 14, 11753-11764.	14.6	10
30	Unconventional Mn Vacancies in Mn–Fe Prussian Blue Analogs: Suppressing Jahn-Teller Distortion for Ultrastable Sodium Storage. CheM, 2020, 6, 1804-1818.	11.7	148
31	Undercooling-directed NaCl crystallization: an approach towards nanocavity-linked graphene networks for fast lithium and sodium storage. Nanoscale, 2020, 12, 7622-7630.	5.6	19
32	Regulating the breathing of mesoporous Fe0.95S1.05 nanorods for fast and durable sodium storage. Energy Storage Materials, 2020, 32, 151-158.	18.0	40
33	Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals. Advanced Materials, 2020, 32, e1907404.	21.0	168
34	3D Printed Compressible Quasi-Solid-State Nickel–Iron Battery. ACS Nano, 2020, 14, 9675-9686.	14.6	80
35	Rechargeable Aqueous Zinc-Ion Batteries in MgSO4/ZnSO4 Hybrid Electrolytes. Nano-Micro Letters, 2020, 12, 60.	27.0	60
36	Super Kinetically Pseudocapacitive MnCo ₂ S ₄ Nanourchins toward Highâ€Rate and Highly Stable Sodiumâ€Ion Storage. Advanced Functional Materials, 2020, 30, 1909702.	14.9	47

#	Article	IF	CITATIONS
37	Interface engineering by atomically thin layer tungsten disulfide catalyst for high performance Li–S battery. Materials Today Energy, 2020, 16, 100380.	4.7	13
38	PVD customized 2D porous amorphous silicon nanoflakes percolated with carbon nanotubes for high areal capacity lithium ion batteries. Journal of Materials Chemistry A, 2020, 8, 4836-4843.	10.3	21
39	Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots. Nanoscale, 2020, 12, 10964-10971.	5.6	24
40	Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery. Chemical Engineering Journal, 2020, 396, 125221.	12.7	94
41	3D-printed functional electrodes towards Zn-Air batteries. Materials Today Energy, 2020, 16, 100407.	4.7	39
42	Morphological and Electronic Dual Regulation of Cobalt–Nickel Bimetal Phosphide Heterostructures Inducing High Water-Splitting Performance. Journal of Physical Chemistry Letters, 2020, 11, 3911-3919.	4.6	33
43	Direct antimony recovery from wastewater as anode materials for sodium-ion batteries. Materials Today Energy, 2020, 16, 100403.	4.7	7
44	Boosting chem-insertion and phys-adsorption in S/N co-doped porous carbon nanospheres for high-performance symmetric Li-ion capacitors. Journal of Materials Chemistry A, 2020, 8, 11529-11537.	10.3	30
45	Promoting Highly Reversible Sodium Storage of Iron Sulfide Hollow Polyhedrons via Cobalt Incorporation and Graphene Wrapping. Advanced Energy Materials, 2019, 9, 1901584.	19.5	71
46	In situ-grown compressed NiCo2S4 barrier layer for efficient and durable polysulfide entrapment. NPG Asia Materials, 2019, 11, .	7.9	27
47	Reversible Sodium Storage: Promoting Highly Reversible Sodium Storage of Iron Sulfide Hollow Polyhedrons via Cobalt Incorporation and Graphene Wrapping (Adv. Energy Mater. 33/2019). Advanced Energy Materials, 2019, 9, 1970127.	19.5	1
48	High-Concentration Niobium-Substituted WS2 Basal Domains with Reconfigured Electronic Band Structure for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 34862-34868.	8.0	21
49	Boosting Sodium Storage of Fe1â^'xS/MoS2 Composite via Heterointerface Engineering. Nano-Micro Letters, 2019, 11, 80.	27.0	77
50	Effects of precursor pre-treatment on the vapor deposition of WS ₂ monolayers. Nanoscale Advances, 2019, 1, 953-960.	4.6	17
51	Efficient Sodium-Ion Intercalation into the Freestanding Prussian Blue/Graphene Aerogel Anode in a Hybrid Capacitive Deionization System. ACS Applied Materials & Interfaces, 2019, 11, 5989-5998.	8.0	106
52	Polypyrrole coated niobium disulfide nanowires as high performance electrocatalysts for hydrogen evolution reaction. Nanotechnology, 2019, 30, 405601.	2.6	7
53	Two-dimensional SnS2 nanosheets on Prussian blue template for high performance sodium ion batteries. Frontiers of Chemical Science and Engineering, 2019, 13, 493-500.	4.4	8
54	Construction of complex NiS multi-shelled hollow structures with enhanced sodium storage. Energy Storage Materials, 2019, 23, 17-24.	18.0	83

#	Article	IF	CITATIONS
55	Explicating the Sodium Storage Kinetics and Redox Mechanism of Highly Pseudocapacitive Binary Transition Metal Sulfide via Operando Techniques and Ab Initio Evaluation. Small Methods, 2019, 3, 1900112.	8.6	21
56	Artificial electrode interfaces enable stable operation of freestanding anodes for high-performance flexible lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 14097-14107.	10.3	21
57	Surface modification of Na ₂ Ti ₃ O ₇ nanofibre arrays using N-doped graphene quantum dots as advanced anodes for sodium-ion batteries with ultra-stable and high-rate capability. Journal of Materials Chemistry A, 2019, 7, 12751-12762.	10.3	83
58	Rhenium disulfide nanosheets/carbon composite as novel anodes for high-rate and long lifespan sodium-ion batteries. Nano Energy, 2019, 61, 626-636.	16.0	46
59	The efficient faradaic Li4Ti5O12@C electrode exceeds the membrane capacitive desalination performance. Journal of Materials Chemistry A, 2019, 7, 8912-8921.	10.3	30
60	3D self-branched zinc-cobalt Oxide@N-doped carbon hollow nanowall arrays for high-performance asymmetric supercapacitors and oxygen electrocatalysis. Energy Storage Materials, 2019, 23, 653-663.	18.0	104
61	Tunable Pseudocapacitive Behavior in Metal–Organic Framework-Derived TiO ₂ @Porous Carbon Enabling High-Performance Membrane Capacitive Deionization. ACS Applied Energy Materials, 2019, 2, 1812-1822.	5.1	60
62	Thermal-Assisted Vertical Electron Injections in Few-Layer Pyramidal-Structured MoS ₂ Crystals. Journal of Physical Chemistry Letters, 2019, 10, 1292-1299.	4.6	5
63	Bifunctional NiCo ₂ S ₄ catalysts supported on a carbon textile interlayer for ultra-stable Li–S battery. Journal of Materials Chemistry A, 2019, 7, 7604-7613.	10.3	78
64	Elucidating the reaction kinetics of lithium–sulfur batteries by <i>operando</i> XRD based on an open-hollow S@MnO ₂ cathode. Journal of Materials Chemistry A, 2019, 7, 6651-6658.	10.3	41
65	Promoting polysulfide conversion by catalytic ternary Fe ₃ O ₄ /carbon/graphene composites with ordered microchannels for ultrahigh-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2019, 7, 25078-25087.	10.3	68
66	Design Multifunctional Catalytic Interface: Toward Regulation of Polysulfide and Li ₂ S Redox Conversion in Li–S Batteries. Small, 2019, 15, e1906132.	10.0	62
67	2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Applied Catalysis B: Environmental, 2019, 243, 678-685.	20.2	116
68	3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li-O2 batteries. Energy Storage Materials, 2019, 16, 155-162.	18.0	49
69	Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery. Energy Storage Materials, 2018, 12, 23-29.	18.0	38
70	Efficient Sodium Storage in Rolledâ€Up Amorphous Si Nanomembranes. Advanced Materials, 2018, 30, e1706637.	21.0	87
71	External Strain Enabled Post-Modification of Nanomembrane-Based Optical Microtube Cavities. ACS Photonics, 2018, 5, 2060-2067.	6.6	13
72	NaTi2(PO4)3-Ag electrodes based desalination battery and energy recovery. FlatChem, 2018, 8, 9-16.	5.6	56

#	Article	IF	CITATIONS
73	3D hierarchical defect-rich NiMo3S4 nanosheet arrays grown on carbon textiles for high-performance sodium-ion batteries and hydrogen evolution reaction. Nano Energy, 2018, 49, 460-470.	16.0	107
74	Superior initial coulombic efficiency through graphene quantum dot decorated on MoS2. FlatChem, 2018, 9, 8-14.	5.6	9
75	Crystallization-Induced Morphological Tuning Toward Denim-like Graphene Nanosheets in a KCl-Copolymer Solution. ACS Nano, 2018, 12, 4019-4024.	14.6	32
76	Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction. Energy Storage Materials, 2018, 15, 98-107.	18.0	102
77	Regulating the polysulfide redox conversion by iron phosphide nanocrystals for high-rate and ultrastable lithium-sulfur battery. Nano Energy, 2018, 51, 340-348.	16.0	277
78	Three-dimensional hierarchical NiCo2S4@MoS2 heterostructure arrays for high performance sodium ion battery. FlatChem, 2018, 10, 14-21.	5.6	15
79	3D carbon foam-supported WS ₂ nanosheets for cable-shaped flexible sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 10813-10824.	10.3	112
80	Hierarchy Design in Metal Oxides as Anodes for Advanced Lithiumâ€lon Batteries. Small Methods, 2018, 2, 1800171.	8.6	69
81	Mechanism Investigation of High-Performance Li–Polysulfide Batteries Enabled by Tungsten Disulfide Nanopetals. ACS Nano, 2018, 12, 9504-9512.	14.6	89
82	Tailoring NiO Nanostructured Arrays by Sulfate Anions for Sodiumâ€lon Batteries. Small, 2018, 14, e1800898.	10.0	39
83	Tunable Pseudocapacitance in 3D TiO _{2â^î́} Nanomembranes Enabling Superior Lithium Storage Performance. ACS Nano, 2017, 11, 821-830.	14.6	124
84	Reinforcing Germanium Electrode with Polymer Matrix Decoration for Long Cycle Life Rechargeable Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 38556-38566.	8.0	29
85	Gas leaching as a path to build hierarchical core–corona porous alumina nanostructures with extraordinary pollutant treatment capacity. RSC Advances, 2013, 3, 1699-1702.	3.6	7
86	Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 1394-1400.	10.3	58