Joris Thybaut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4400758/publications.pdf

Version: 2024-02-01

201 papers 5,358 citations

71102 41 h-index 58 g-index

203 all docs

203 docs citations

times ranked

203

4968 citing authors

#	Article	IF	CITATIONS
1	Evidences for pore mouth and key–lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites. Catalysis Today, 2001, 65, 111-116.	4.4	158
2	Microkinetics of methane oxidative coupling. Catalysis Today, 2008, 137, 90-102.	4.4	145
3	Acidâ^'Metal Balance of a Hydrocracking Catalyst:Â Ideal versus Nonideal Behavior. Industrial & Engineering Chemistry Research, 2005, 44, 5159-5169.	3.7	125
4	Soft templated mesoporous carbons: Tuning the porosity for the adsorption of large organic pollutants. Carbon, 2017, 116, 528-546.	10.3	116
5	Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using ¹³ C NMR and Comprehensive GC × GC. ACS Sustainable Chemistry and Engineering, 2016, 4, 4974-4985.	6.7	109
6	Alkene Protonation Enthalpy Determination from Fundamental Kinetic Modeling of Alkane Hydroconversion on Pt/H–(US)Y-Zeolite. Journal of Catalysis, 2001, 202, 324-339.	6.2	95
7	Catalyst design based on microkinetic models: Oxidative coupling of methane. Catalysis Today, 2011, 159, 29-36.	4.4	84
8	Kinetic modeling of pore mouth catalysis in the hydroconversion of n-octane on Pt-H-ZSM-22. Journal of Catalysis, 2003, 220, 399-413.	6.2	83
9	Effect of composition and preparation of supported MoO3 catalysts for anisole hydrodeoxygenation. Chemical Engineering Journal, 2018, 335, 120-132.	12.7	79
10	Formation of ZSMâ€⊋2 Zeolite Catalytic Particles by Fusion of Elementary Nanorods. Chemistry - A European Journal, 2007, 13, 10070-10077.	3.3	77
11	Single-Event Microkinetics for Methanol to Olefins on H-ZSM-5. Industrial & Engineering Chemistry Research, 2013, 52, 1491-1507.	3.7	73
12	Single-Event MicroKinetics: Catalyst design for complex reaction networks. Journal of Catalysis, 2013, 308, 352-362.	6.2	72
13	Kinetic modeling of the total oxidation of propane over CuO-CeO2∫γ-Al2O3. Applied Catalysis B: Environmental, 2010, 95, 26-38.	20.2	67
14	First-principles based kinetic model for the hydrogenation of toluene. Journal of Catalysis, 2005, 236, 129-138.	6.2	64
15	The total oxidation of propane over supported Cu and Ce oxides: A comparison of single and binary metal oxides. Journal of Catalysis, 2010, 272, 109-120.	6.2	63
16	Oxidative coupling of methane: catalytic behaviour assessment via comprehensive microkinetic modelling. Applied Catalysis B: Environmental, 2014, 150-151, 496-505.	20.2	63
17	Hydrogenation kinetics of toluene on Pt/ZSM-22. Chemical Engineering Journal, 2002, 90, 117-129.	12.7	61
18	Alkylcarbenium Ion Concentrations in Zeolite Pores During Octane Hydrocracking on Pt/H-USY Zeolite. Catalysis Letters, 2004, 94, 81-88.	2.6	61

#	Article	IF	Citations
19	A systematic methodology for kinetic modeling of chemical reactions applied to ⟨i⟩n⟨ i⟩â€hexane hydroisomerization. AICHE Journal, 2015, 61, 880-892.	3.6	61
20	Single-Event Rate Parameters for the Hydrocracking of Cycloalkanes on Pt/US-Y Zeolites. Industrial & Lamp; Engineering Chemistry Research, 2001, 40, 1832-1844.	3.7	60
21	Methane aromatisation based upon elementary steps: Kinetic and catalyst descriptors. Microporous and Mesoporous Materials, 2012, 164, 302-312.	4.4	59
22	Spatial arrangement and acid strength effects on acid–base cooperatively catalyzed aldol condensation on aminosilica materials. Journal of Catalysis, 2015, 325, 19-25.	6.2	59
23	Perspective on Overcoming Scale-Up Hurdles for the Reductive Catalytic Fractionation of Lignocellulose Biomass. Industrial & Engineering Chemistry Research, 2020, 59, 17035-17045.	3.7	59
24	Ethene oligomerization on Ni-SiO2-Al2O3: Experimental investigation and Single-Event MicroKinetic modeling. Applied Catalysis A: General, 2015, 489, 292-304.	4.3	58
25	Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A. Materials, 2015, 8, 1652-1665.	2.9	56
26	Pt/H-ZSM-22 hydroisomerization catalysts optimization guided by Single-Event MicroKinetic modeling. Journal of Catalysis, 2012, 290, 165-176.	6.2	55
27	Pore mouth versus intracrystalline adsorption of isoalkanes on ZSM-22 and ZSM-23 zeolites under vapour and liquid phase conditions. Chemical Communications, 2003, , 1880.	4.1	53
28	Single-Event Microkinetic Model for Fischerâ^'Tropsch Synthesis on Iron-Based Catalysts. Industrial & Lamp; Engineering Chemistry Research, 2008, 47, 5879-5891.	3.7	52
29	Insights into the Reaction Mechanism of Ethanol Conversion into Hydrocarbons on Hâ€ZSMâ€5. Angewandte Chemie - International Edition, 2016, 55, 12817-12821.	13.8	52
30	A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis. Applied Catalysis B: Environmental, 2017, 205, 469-480.	20.2	52
31	Experimental investigation of ethylene hydroformylation to propanal on Rh and Co based catalysts. Applied Catalysis A: General, 2014, 469, 357-366.	4.3	51
32	Pore mouth physisorption of alkanes on ZSM-22: estimation of physisorption enthalpies and entropies by additivity method. Journal of Catalysis, 2003, 218, 135-147.	6.2	50
33	Quantitative screening of an extended oxidative coupling of methane catalyst library. Applied Catalysis B: Environmental, 2016, 199, 252-259.	20.2	50
34	A Single-Event MicroKinetic model for "ethylbenzene dealkylation/xylene isomerization―on Pt/H-ZSM-5 zeolite catalyst. Applied Catalysis A: General, 2012, 425-426, 130-144.	4.3	49
35	Silanolâ€Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups. ChemCatChem, 2014, 6, 255-264.	3.7	48
36	Effects of amine structure and base strength on acid–base cooperative aldol condensation. Catalysis Today, 2015, 246, 35-45.	4.4	47

#	Article	IF	Citations
37	Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles. Industrial & Engineering Chemistry Research, 2014, 53, 1825-1840.	3.7	46
38	Ion-exchange resin catalyzed transesterification of ethyl acetate with methanol: Gel versus macroporous resins. Chemical Engineering Journal, 2014, 242, 170-179.	12.7	46
39	Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coordination Chemistry Reviews, 2019, 401, 213064.	18.8	45
40	Identification of efficient promoters and selectivity trends in high temperature Fischer-Tropsch synthesis over supported iron catalysts. Applied Catalysis B: Environmental, 2020, 273, 119028.	20.2	45
41	Optimization of soft templated mesoporous carbon synthesis using Definitive Screening Design. Chemical Engineering Journal, 2015, 259, 126-134.	12.7	44
42	Kinetic assessment of dry reforming of methane on Pt + Ni containing composite of fluorite-like structure. Applied Catalysis B: Environmental, 2016, 182, 513-524.	20.2	43
43	Skeletal isomerization of octadecane on bifunctional ZSM-23 zeolite catalyst. Catalysis Letters, 2005, 100, 235-242.	2.6	42
44	Pd nanoparticle and molecular Pd2+ leaching pathways for a strongly acid versus strongly basic resin supported Pd nanoparticle catalyst in Suzuki coupling. Chemical Engineering Journal, 2019, 374, 576-588.	12.7	41
45	Single-Event MicroKinetics for coke formation in catalytic cracking. Catalysis Today, 2005, 107-108, 619-629.	4.4	39
46	The role of water in the reusability of aminated silica catalysts for aldol reactions. Journal of Catalysis, 2018, 361, 51-61.	6.2	39
47	Effect of Co incorporation and support selection on deoxygenation selectivity and stability of (Co)Mo catalysts in anisole HDO. Applied Catalysis A: General, 2019, 571, 61-70.	4.3	39
48	Information-Driven Catalyst Design Based on High-Throughput Intrinsic Kinetics. Catalysts, 2015, 5, 1948-1968.	3.5	37
49	Relumped single-event microkinetic model for alkane hydrocracking on shape-selective catalysts: catalysis on ZSM-22 pore mouths, bridge acid sites and micropores. Chemical Engineering Science, 2004, 59, 4765-4772.	3.8	36
50	Bifunctional catalytic isomerization of decane over MTT-type aluminosilicate zeolite crystals with siliceous rim. Journal of Catalysis, 2006, 239, 451-459.	6.2	36
51	n- and Isoalkane Adsorption Mechanisms on Zeolite MCM-22. Journal of Physical Chemistry B, 2006, 110, 8551-8558.	2.6	35
52	Naphthalene hydrogenation over a NiMo \hat{l}^3 -Al2O3 catalyst: Experimental study and kinetic modelling. Catalysis Today, 2008, 130, 231-242.	4.4	35
53	Role of Surface Hydroxyl Species in Copper-Catalyzed Hydrogenation of Ketones. ACS Catalysis, 2018, 8, 7539-7548.	11.2	35
54	Active phases for high temperature Fischer-Tropsch synthesis in the silica supported iron catalysts promoted with antimony and tin. Applied Catalysis B: Environmental, 2021, 292, 120141.	20.2	35

#	Article	lF	Citations
55	Tunable Large Pore Mesoporous Carbons for the Enhanced Adsorption of Humic Acid. Langmuir, 2017, 33, 6769-6777.	3.5	34
56	Assignment of capacitance spectroscopy signals of CIGS solar cells to effects of non-ohmic contacts. Solar Energy Materials and Solar Cells, 2013, 112, 78-83.	6.2	33
57	Steering linear 1-alkene, propene or gasoline yields in ethene oligomerization via the interplay between nickel and acid sites. Chemical Engineering Science, 2017, 173, 49-59.	3.8	32
58	Design of Optimum Zeolite Pore System for Central Hydrocracking of Long-Chain n-Alkanes based on a Single-Event Microkinetic Model. Topics in Catalysis, 2009, 52, 1251-1260.	2.8	31
59	n-Hexadecane hydrocracking Single-Event MicroKinetics on Pt/H-beta. Applied Catalysis A: General, 2012, 441-442, 10-20.	4.3	31
60	Influence of the zeolite composition on the hydro-isomerisation and hydrocracking of alkanes on Pt/USY zeolites: modelling of the reaction kinetics using an adsorption–reaction approach. Applied Catalysis A: General, 2003, 246, 17-28.	4.3	30
61	Kinetic modeling of the total oxidation of propane over anatase and vanadia sputter deposited catalysts. Applied Catalysis B: Environmental, 2009, 90, 295-306.	20.2	30
62	Single-Event MicroKinetics of Aromatics Hydrogenation on Pt/H-ZSM22. Industrial & Engineering Chemistry Research, 2011, 50, 12933-12945.	3.7	29
63	Selective removal of hydrogen sulfide from simulated biogas streams using sterically hindered amine adsorbents. Chemical Engineering Journal, 2020, 379, 122349.	12.7	29
64	Efficient Promoters and Reaction Paths in the CO ₂ Hydrogenation to Light Olefins over Zirconia-Supported Iron Catalysts. ACS Catalysis, 2022, 12, 3211-3225.	11.2	29
65	Fischer-Tropsch Synthesis: Development of a Microkinetic Model for Metal Catalysis. Oil and Gas Science and Technology, 2006, 61, 489-496.	1.4	28
66	Unraveling Diffusion and Other Shape Selectivity Effects in ZSM5 Using <i>n</i> Hexane Hydroconversion Single-Event Microkinetics. Industrial & Engineering Chemistry Research, 2014, 53, 15333-15347.	3.7	28
67	Pyridine hydrodenitrogenation kinetics over a sulphided NiMo/γ-Al2O3 catalyst. Fuel, 2016, 171, 253-262.	6.4	28
68	Improving the efficiency of the Diels–Alder process by using flow chemistry and zeolite catalysis. Green Chemistry, 2017, 19, 237-248.	9.0	28
69	Kinetic Modeling of the Conversion of Complex Hydrocarbon Feedstocks by Acid Catalysts. Chemical Engineering and Technology, 2003, 26, 509-514.	1.5	26
70	A single-event microkinetic analysis of the catalytic cracking of (cyclo)alkanes on an equilibrium catalyst in the absence of coke formation. Chemical Engineering Science, 2007, 62, 5033-5038.	3.8	26
71	Open Data in Catalysis: From Today's Big Picture to the Future of Small Data. ChemCatChem, 2021, 13, 836-850.	3.7	26
72	Ethylene oligomerization on nickel catalysts on a solid acid support: From New mechanistic insights to tunable bifunctionality. Applied Catalysis A: General, 2021, 624, 118296.	4.3	25

#	Article	IF	Citations
73	Microkinetic evaluation of normal and inverse kinetic isotope effects during methane steam reforming to synthesis gas over a Ni/NiAl2O4 model catalyst. Applied Catalysis A: General, 2015, 492, 231-242.	4.3	24
74	Catalytic Reductive Aminolysis of Reducing Sugars: Elucidation of Reaction Mechanism. ACS Catalysis, 2018, 8, 4201-4212.	11.2	24
75	Model-Based Catalyst Selection for the Oxidative Coupling of Methane in an Adiabatic Fixed-Bed Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 16295-16307.	3.7	24
76	Ethanol dehydrogenation over Cu catalysts promoted with Ni: Stability control. Applied Catalysis A: General, 2020, 591, 117401.	4.3	24
77	Catalytic cracking and coking of (cyclo)alkane/1-octene mixtures on an equilibrium catalyst. Applied Catalysis A: General, 2006, 314, 184-199.	4.3	23
78	A simple correction method for series resistance and inductance on solar cell admittance spectroscopy. Solar Energy Materials and Solar Cells, 2010, 94, 966-970.	6.2	23
79	About RCâ€like contacts in deep level transient spectroscopy and Cu(In,Ga)Se ₂ solar cells. Progress in Photovoltaics: Research and Applications, 2012, 20, 588-594.	8.1	23
80	Adsorption and reaction in the transesterification of ethyl acetate with methanol on Lewatit K1221. Journal of Molecular Catalysis A, 2012, 359, 57-68.	4.8	23
81	Single-Event MicroKinetics (SEMK) for Methanol to Hydrocarbons (MTH) on H-ZSM-23. Catalysis Today, 2013, 215, 224-232.	4.4	23
82	Pyridine hydrodenitrogenation over industrial NiMo \hat{l}^3 -Al2O3 catalyst: Application of gas phase kinetic models to liquid phase reactions. Fuel, 2014, 125, 206-218.	6.4	23
83	A Single-Event MicroKinetic assessment of n-alkane hydroconversion on ultrastable Y zeolites after Atomic Layer Deposition of alumina. Journal of Catalysis, 2014, 311, 433-446.	6.2	23
84	Challenges and opportunities for molecule-based management of chemical processes. Current Opinion in Chemical Engineering, 2016, 13, 142-149.	7.8	23
85	Descriptor–property relationships in heterogeneous catalysis: exploiting synergies between statistics and fundamental kinetic modelling. Catalysis Science and Technology, 2019, 9, 3109-3125.	4.1	23
86	Signature of a back contact barrier in DLTS spectra. Journal of Applied Physics, 2011, 109, .	2.5	22
87	A Novel Technology for Natural Gas Conversion by Means of Integrated Oxidative Coupling and Dry Reforming of Methane. Chemie-Ingenieur-Technik, 2014, 86, 1855-1870.	0.8	22
88	Analytical Techniques for Electrically Active Defect Detection. Semiconductors and Semimetals, 2015, 91, 205-250.	0.7	22
89	NiCuMo-SiO2 catalyst for pyrolysis oil upgrading: Model acidic treatment study. Applied Catalysis A: General, 2019, 573, 1-12.	4.3	22
90	Characterization of flexible thin film CIGSe solar cells grown on different metallic foil substrates. Energy Procedia, 2010, 2, 109-117.	1.8	21

#	Article	IF	Citations
91	Maximizing n-alkane hydroisomerization: the interplay of phase, feed complexity and zeolite catalyst mixing. Catalysis Science and Technology, 2015, 5, 2053-2058.	4.1	21
92	Shape of Cobalt and Platinum Nanoparticles Under a CO Atmosphere: A Combined In Situ TEM and Computational Catalysis Study. ACS Catalysis, 2019, 9, 7449-7456.	11.2	21
93	Kinetic Modeling of Hydrotreating for Enhanced Upgrading of Light Cycle Oil. Industrial & Engineering Chemistry Research, 2019, 58, 13064-13075.	3.7	21
94	Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. Reaction Chemistry and Engineering, 2020, 5, 1556-1618.	3.7	21
95	A Unified Single-Event Microkinetic Model for Alkane Hydroconversion in Different Aggregation States on Pt/Hâ^'USY-Zeolites. Journal of Physical Chemistry B, 2006, 110, 6750-6758.	2.6	20
96	Facile Synthesis of Cooperative Acid–Base Catalysts by Clicking Cysteine and Cysteamine on an Ethyleneâ€Bridged Periodic Mesoporous Organosilica. European Journal of Inorganic Chemistry, 2016, 2016, 2144-2151.	2.0	20
97	Synergy between shape selective and non-shape selective bifunctional zeolites modelled via the Single-Event MicroKinetic (SEMK) methodology. Chemical Engineering Science, 2010, 65, 174-178.	3.8	19
98	Simulation of an industrial riser for catalytic cracking in the presence of coking using Single-Event MicroKinetics. Catalysis Today, 2010, 150, 319-331.	4.4	19
99	Oxidative Coupling of Methane: Opportunities for Microkinetic Modelâ€Assisted Process Implementations. Chemical Engineering and Technology, 2016, 39, 1996-2010.	1.5	19
100	Bridging the gap between liquid and vapor phase hydrocracking. Catalysis Today, 2006, 111, 94-102.	4.4	18
101	A Microkinetic Vision on High-Throughput Catalyst Formulation and Optimization: Development of an Appropriate Software Tool. Topics in Catalysis, 2010, 53, 64-76.	2.8	18
102	Hydrodeoxygenation of phenolics in liquid phase over supported MoO3 and carburized analogues. Biomass Conversion and Biorefinery, 2017, 7, 343-359.	4.6	18
103	Electrical properties of extended defects in strain relaxed GeSn. Applied Physics Letters, 2018, 113, 022102.	3.3	18
104	A detailed experimental and kinetic modeling study on pyrolysis and oxidation of oxymethylene ether-2 (OME-2). Combustion and Flame, 2022, 238, 111914.	5.2	18
105	Tailoring the physical and catalytic properties of lanthanum oxycarbonate nanoparticles. Applied Catalysis A: General, 2017, 536, 104-112.	4.3	17
106	Effect of Ion Exchange Resin Functionality on Catalytic Activity and Leaching of Palladium Nanoparticles in Suzuki Crossâ€Coupling Reactions. ChemCatChem, 2017, 9, 451-457.	3.7	17
107	Role of Keto–Enol Tautomerization in the Copper-Catalyzed Hydrogenation of Ketones. ACS Catalysis, 2019, 9, 3831-3839.	11.2	17
108	Aminated poly(ethylene glycol) methacrylate resins as stable heterogeneous catalysts for the aldol reaction in water. Journal of Catalysis, 2020, 381, 540-546.	6.2	17

#	Article	IF	Citations
109	Simulation of a slurryâ€bubble column reactor for Fischerâ€Tropsch synthesis using singleâ€event microkinetics. AICHE Journal, 2009, 55, 2159-2170.	3.6	16
110	PdZn nanoparticle catalyst formation for ethanol dehydrogenation: Active metal impregnation vs incorporation. Applied Catalysis A: General, 2018, 555, 12-19.	4.3	16
111	Autocatalytic Role of Molecular Hydrogen in Copper-Catalyzed Transfer Hydrogenation of Ketones. ACS Catalysis, 2019, 9, 8073-8082.	11.2	16
112	Co-metal induced stabilization of alumina-supported copper: impact on the hydrogenolysis of glycerol to 1,2-propanediol. Catalysis Communications, 2020, 146, 106134.	3.3	16
113	Catalyst screening for the oxidative coupling of methane: from isothermal to adiabatic operation <i>via</i> microkinetic simulations. Reaction Chemistry and Engineering, 2020, 5, 584-596.	3.7	16
114	Multi-output machine learning models for kinetic data evaluation : A Fischer–Tropsch synthesis case study. Chemical Engineering Journal, 2022, 446, 137186.	12.7	16
115	n-Alkane hydroconversion on Zeogrid and colloidal ZSM-5 assembled from aluminosilicate nanoslabs of MFI framework type. Chemical Communications, 2003, , 1888.	4.1	15
116	Kinetic models for catalytic reactions from first principles: benzene hydrogenation. Molecular Physics, 2004, 102, 267-272.	1.7	15
117	Single-event microkinetics for coke formation during the catalytic cracking of (cyclo)alkane/1-octene mixtures. Catalysis Today, 2007, 127, 17-30.	4.4	15
118	A new methodology to probe Shape Selectivity in Porous Adsorbents. Microporous and Mesoporous Materials, 2008, 116, 607-613.	4.4	15
119	An accurate analytical approximation to the capacitance transient amplitude in deep level transient spectroscopy for fitting carrier capture data. Review of Scientific Instruments, 2008, 79, 093902.	1.3	15
120	Catalytic and molecular separation properties of Zeogrids and Zeotiles. Catalysis Today, 2011, 168, 17-27.	4.4	15
121	Extension of the Single-Event Microkinetic Model to Alkyl Substituted Monoaromatics Hydrogenation on a Pt Catalyst. ACS Catalysis, 2012, 2, 1305-1318.	11.2	15
122	Multiscale Aspects in Hydrocracking. Advances in Catalysis, 2016, 59, 109-238.	0.2	15
123	Quantifying the dominant factors in Cu catalyst deactivation during glycerol hydrogenolysis. Journal of Industrial and Engineering Chemistry, 2017, 54, 270-277.	5.8	15
124	Rational design of nucleophilic amine sites via computational probing of steric and electronic effects. Catalysis Today, 2019, 334, 96-103.	4.4	15
125	Integrated Stefan–Maxwell, Mean Field, and Single-Event Microkinetic Methodology for Simultaneous Diffusion and Reaction inside Microporous Materials. Journal of Physical Chemistry C, 2014, 118, 22053-22068.	3.1	14
126	A Single-Event MicroKinetic model for the cobalt catalyzed Fischer-Tropsch Synthesis. Applied Catalysis A: General, 2016, 524, 149-162.	4.3	14

#	Article	IF	Citations
127	Synthesis of L-serine modified benzene bridged periodic mesoporous organosilica and its catalytic performance towards aldol condensations. Microporous and Mesoporous Materials, 2017, 251, 1-8.	4.4	14
128	Fast pyrolysis oil stabilization kinetics over a Ni-Cu catalyst using propionic acid as a model compound. Applied Catalysis B: Environmental, 2018, 233, 46-57.	20.2	14
129	Operando computational catalysis: shape, structure, and coverage under reaction conditions. Current Opinion in Chemical Engineering, 2019, 23, 85-91.	7.8	14
130	Balance between model detail and experimental information <scp>in</scp> steam methane reforming <scp>o</scp> ver a Ni/MgOâ€SiO ₂ catalyst. AICHE Journal, 2019, 65, 1222-1233.	3.6	13
131	Quantification of the global and regional impacts of gas flaring on human health via spatial differentiation. Environmental Pollution, 2021, 291, 118213.	7. 5	13
132	Anisole Hydrotreatment Kinetics on CoMo Catalyst in the Absence of Sulfur: Experimental Investigation and Model Construction. Energy & Energy & 2017, 31, 7082-7092.	5.1	12
133	Formation and stability of an active PdZn nanoparticle catalyst on a hydrotalcite-based support for ethanol dehydrogenation. Catalysis Science and Technology, 2017, 7, 3715-3727.	4.1	12
134	Large-Scale Exploitation of Bimodal Reaction Sequences Including Degradation: Comparison of Jet Loop and Trickle Bed Reactors. Industrial & Engineering Chemistry Research, 2017, 56, 14192-14199.	3.7	12
135	Kinetics of homogeneous and heterogeneous reactions in the reductive aminolysis of glucose with dimethylamine. Applied Catalysis B: Environmental, 2018, 227, 161-169.	20.2	12
136	Synthesis and support interaction effects on the palladium nanoparticle catalyst characteristics. Advances in Catalysis, 2019, , 1-120.	0.2	12
137	Machine learning based interpretation of microkinetic data: a Fischer–Tropsch synthesis case study. Reaction Chemistry and Engineering, 2021, 7, 101-110.	3.7	12
138	Impact of oxygen vacancies in Ni supported mixed oxide catalysts on anisole hydrodeoxygenation. Catalysis Communications, 2022, 164, 106436.	3.3	12
139	Development of an Integrated Informatics Toolbox: HT Kinetic and Virtual Screening. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 85-97.	1.1	11
140	Extension of the Single-Event Methodology to Metal Catalysis: Application to Fischer-Tropsch Synthesis. Oil and Gas Science and Technology, 2011, 66, 423-435.	1.4	11
141	Interplay of Kinetics and Thermodynamics in Catalytic Steam Methane Reforming over Ni/MgO-SiO2. Industrial & Catalytic Steam Methane Reforming over Ni/MgO-SiO2.	3.7	11
142	Design of a Mesoscale Continuousâ€Flow Route toward Lithiated Methoxyallene. ChemSusChem, 2018, 11, 2248-2254.	6.8	11
143	Kinetic evaluation of chitosan-derived catalysts for the aldol reaction in water. Reaction Chemistry and Engineering, 2019, 4, 1948-1956.	3.7	11
144	Metal–organic frameworks as catalysts for fructose conversion into 5â€hydroxymethylfurfural: Catalyst screening and parametric study. Applied Organometallic Chemistry, 2021, 35, e6419.	3.5	11

#	Article	IF	Citations
145	Insights into the Reaction Mechanism of Ethanol Conversion into Hydrocarbons on Hâ€ZSMâ€5. Angewandte Chemie, 2016, 128, 13009-13013.	2.0	10
146	Tuning component enrichment in amino acid functionalized (organo)silicas. Catalysis Communications, 2017, 88, 85-89.	3.3	10
147	Unravelling the influence of catalyst properties on light olefin production via Fischer–Tropsch synthesis: A descriptor space investigation using Single-Event MicroKinetics. Chemical Engineering Journal, 2021, 419, 129633.	12.7	10
148	Oxygen functionality and chain length effects in HDO: Impact of competitive adsorption on reactivity. Fuel, 2022, 308, 121940.	6.4	10
149	Reaction Pathways of 1-Cyclohexyloctane in Admixture with Dodecane on Pt/H–ZSM-22 Zeolite in Three-Phase Hydroconversion. Journal of Catalysis, 2001, 198, 29-40.	6.2	9
150	Aggregation State Effects in Shape-Selective Hydroconversion. Industrial & Engineering Chemistry Research, 2007, 46, 8710-8721.	3.7	9
151	Assessment of dominant factors affecting liquid phase hydroisomerization on bifunctional zeolites. Applied Catalysis A: General, 2008, 349, 29-39.	4.3	9
152	Techno-economic evaluation of squalene recovery from oil deodorizer distillates. Chemical Engineering Research and Design, 2020, 154, 122-134.	5.6	9
153	Adsorption Competition Effects in Hydroconversion of Alkane Mixtures on Zeolites. International Journal of Chemical Reactor Engineering, 2003, 1, .	1.1	8
154	Modeling of capacitance transients of thin-film solar cells: A valuable tool to gain information on perturbing layers or interfaces. Applied Physics Letters, 2014, 104, 053502.	3.3	8
155	Analytical Rate Expressions Accounting for the Elementary Steps in Benzene Hydrogenation on Pt. Industrial & Description of Pt	3.7	8
156	Catalyst Stability Assessment in a Lab-Scale Liquid-Solid (LS)Â ² Plug-Flow Reactor. Catalysts, 2019, 9, 755.	3.5	8
157	Multivariate Analysis of Industrial Biorefinery Processes: Strategy for Improved Process Understanding with Case Studies in Fatty Acid Production. Industrial & Engineering Chemistry Research, 2020, 59, 7732-7745.	3.7	8
158	Microkinetic model validation for Fischer-Tropsch synthesis at methanation conditions based on steady state isotopic transient kinetic analysis. Journal of Industrial and Engineering Chemistry, 2022, 105, 191-209.	5.8	8
159	Unravelling the redox mechanism and kinetics of a highly active and selective Ni-based material for the oxidative dehydrogenation of ethane. Reaction Chemistry and Engineering, 2022, 7, 619-640.	3.7	8
160	A three-phase Robinson-Mahoney reactor as a tool for intrinsic kinetic measurements: Determination of gas-liquid hold up and volumetric mass transfer coefficient. Chemical Engineering Science, 2017, 170, 694-704.	3.8	7
161	A comprehensive model for the role of water and silanols in the amine catalyzed aldol reaction. Chemical Engineering Journal, 2021, 404, 127070.	12.7	7
162	A Disruptive Innovation for Upgrading Methane to C3 Commodity Chemicals. Johnson Matthey Technology Review, 2021, 65, 311-329.	1.0	7

#	Article	IF	CITATIONS
163	Acidâ^'Metal Balance of a Hydrocracking Catalyst:  Ideal versus Nonideal Behavior. , 0, , .		7
164	Investigation of recombination mechanisms in Cu(In,Ga)Se <mml:math altimg="si3.svg" display="inline" id="d1e2531" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:math> solar cells using numerical modelling. Solar Energy, 2021, 228, 464-473.	6.1	7
165	Recent advances in amine catalyzed aldol condensations. Catalysis Reviews - Science and Engineering, 0, , 1-83.	12.9	7
166	Single Event MicroKinetics (SEMK) as a tool for catalyst and process design. Studies in Surface Science and Catalysis, 2006, , 55-60.	1.5	6
167	Modeling of Toluene Acetylation with Acetic Anhydride on H-USY Zeolite. Industrial & Engineering Chemistry Research, 2011, 50, 11822-11832.	3.7	6
168	Efficient continuous-flow benzotriazole activation and coupling of amino acids. Journal of Flow Chemistry, 2015, 5, 220-227.	1.9	6
169	Understanding and optimization of chemical reactor performance for bimodal reaction sequences. AICHE Journal, 2017, 63, 111-119.	3.6	6
170	Analysis of volumeâ€toâ€surface ratio effects on methane oxidative coupling using microkinetic modeling. AICHE Journal, 2018, 64, 2603-2611.	3.6	6
171	Enhancing Zeolite Performance by Catalyst Shaping in a Mesoscale Continuousâ€Flow Diels–Alder Process. ChemSusChem, 2018, 11, 1686-1693.	6.8	6
172	First-Principles-Based Simulation of an Industrial Ethanol Dehydration Reactor. Catalysts, 2019, 9, 921.	3.5	6
173	Impact of the Spatial Distribution of Active Material on Bifunctional Hydrocracking. Industrial & Samp; Engineering Chemistry Research, 2021, 60, 6357-6378.	3.7	6
174	The intricacies of the "steady-state―regime in methanol-to-hydrocarbon experimentation over H-ZSM-5. Catalysis Science and Technology, 2022, 12, 855-868.	4.1	6
175	Kinetic Study of Acetic Acid Esterification with Methanol Catalyzed by Gel and Macroporous Resins. Journal of Ion Exchange, 2014, 25, 234-241.	0.3	5
176	A Single-Event Microkinetic model for ethylene hydroformylation to propanal on Rh and Co based catalysts. Applied Catalysis A: General, 2016, 524, 32-44.	4.3	5
177	Non-Isothermal Modeling of Dark Current-Voltage Measurements of a CIGS Solar Cell. ECS Journal of Solid State Science and Technology, 2018, 7, P50-P54.	1.8	5
178	Model based analysis of the effect of 2-ethylphenol addition to n-decane in fluid catalytic cracking over a series of zeolites. Chemical Engineering Journal, 2019, 377, 120090.	12.7	5
179	From catalyst to process: bridging the scales in modeling the OCM reaction. Catalysis Today, 2021, 365, 35-45.	4.4	5
180	Kinetic Modeling of Ethene Oligomerization on Bifunctional Nickel and Acid \hat{l}^2 Zeolites. Industrial & Engineering Chemistry Research, 2022, 61, 3860-3876.	3.7	5

#	Article	IF	Citations
181	Environmental Performance Assessment of a Novel Process Concept for Propanol Production from Widely Available and Wasted Methane Sources. Industrial & Engineering Chemistry Research, 2022, 61, 11071-11079.	3.7	5
182	Complex reaction network generation for Steady State Isotopic Transient Kinetic Analysis: Fischer-Tropsch Synthesis. Computers and Chemical Engineering, 2019, 125, 594-605.	3.8	4
183	Assessment of Phosphate Ore Digestion Kinetics and Mixing Behavior: A First Step in Unravelling NP-Fertilizer Production. Industrial & Engineering Chemistry Research, 2021, 60, 16599-16606.	3.7	4
184	Comparison of jet loop and trickle-bed reactor performance in large-scale exploitation of glucose reductive aminolysis. Catalysis Today, 2022, 387, 119-127.	4.4	4
185	Accelerating Kinetic Parameter Identification by Extracting Information from Transient Data: A Hydroprocessing Study Case. Catalysts, 2020, 10, 361.	3.5	3
186	Iterative lumping approach for representing lipid feedstocks in fatty acid distillation simulation and optimization. AICHE Journal, 2021, 67, e17235.	3.6	3
187	Simulation of an Industrial-Scale Reactive Liquid–Liquid Extraction Tower Using Polar PC-SAFT Toward Understanding and Improving the Hydrolysis of Triglycerides. ACS Sustainable Chemistry and Engineering, 2021, 9, 4735-4743.	6.7	3
188	Extracting kinetic information in catalysis: an automated tool for the exploration of small data. Reaction Chemistry and Engineering, 0 , , .	3.7	3
189	Critical Assessment of the Thermodynamics in Acidic Resin-Catalyzed Esterifications. Industrial & Engineering Chemistry Research, 2020, 59, 22079-22091.	3.7	3
190	The secondary chemistry of synthetic fuel oxymethylene ethers unraveled: Theoretical and kinetic modeling of methoxymethyl formate and formic anhydride decomposition. Journal of the Energy Institute, 2022, 104, 46-54.	5.3	3
191	Synthesis of MTT zeolite catalysts with surface Al depletion. Studies in Surface Science and Catalysis, 2006, 162, 873-880.	1.5	2
192	Productivity Enhancement for the Oxidative Coupling of Methane in Adiabatic Layered-Bed Reactors. ACS Engineering Au, 2021, 1, 85-95.	5.1	2
193	Interplay of Metal-Acid Balance and Methylcyclohexane Admixture Effect on <i>n</i> -Octane Hydroconversion over Pt/HUSY. Industrial & Engineering Chemistry Research, 2021, 60, 12505-12520.	3.7	2
194	Hydrocracking of complex mixtures: From bulk properties, over fundamental kinetics to detailed product composition. Catalysis Today, 2021, 378, 189-201.	4.4	2
195	Development of a control strategy for efficient operation of a CSTR reactor. , 2015, , .		1
196	Deep level transient spectroscopy measurements on Mo/Cu(In,Ga)Se 2 /metal structure. Thin Solid Films, 2015, 582 , $371-374$.	1.8	1
197	Impact of band to band tunneling in In0.53Ga0.47As tunnel diodes on the deep level transient spectra. Applied Physics Letters, 2018, 113, 232101.	3.3	1
198	Stabilization time modeling for hydroprocessing: Identification of the dominant factors. Chemical Engineering Science, 2020, 213, 115392.	3.8	1

#	ARTICLE	IF	CITATIONS
199	Kinetics Assessment of the Homogeneously Catalyzed Hydroformylation of Ethylene on an Rh Catalyst. Industrial & Description of Ethylene on an Rh Catalyst. Industrial & Description of Ethylene on an Rh Catalyst.	3.7	1
200	Mixture effects in alkane/cycloalkane hydroconversion over Pt/HUSY: Carbon number impact. Fuel, 2022, 318, 123651.	6.4	1
201	Computational Fluid Dynamics Study of a Pharmaceutical Full-Scale Hydrogenation Reactor. Processes, 2022, 10, 1163.	2.8	O