
Mentor Sopjani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4400728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vasorelaxant Effects of the Vitex Agnus-Castus Extract. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-7.	0.5	1
2	Klotho-Dependent Role of 1,25(OH)2D3 in the Brain. NeuroSignals, 2021, 29, 14-23.	0.5	7
3	Insight into the Mechanisms Underlying the Tracheorelaxant Properties of the <i>Sideritis raeseri</i> Extract. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-8.	0.5	3
4	Mechanisms Underlying the Tracheorelaxant Effect of Vitex agnus-castus Extract. Revista Brasileira De Farmacognosia, 2020, 30, 103-110.	0.6	4
5	Intracellular signaling of the AMP-activated protein kinase. Advances in Protein Chemistry and Structural Biology, 2019, 116, 171-207.	1.0	18
6	The Glycogen Synthase Kinase-3 in the Regulation of Ion Channels and Cellular Carriers. Current Medicinal Chemistry, 2019, 26, 6817-6829.	1.2	8
7	Regulation of Ion Channels, Cellular Carriers and Na(+)/K(+)/ATPase by Janus Kinase 3. Current Medicinal Chemistry, 2017, 24, 2251-2260.	1.2	7
8	The Relevance of JAK2 in the Regulation of Cellular Transport. Current Medicinal Chemistry, 2016, 23, 578-588.	1.2	17
9	AMP-Activated Protein Kinase α1 Regulates Cardiac Gap Junction Protein Connexin 43 and Electrical Remodeling Following Pressure Overload. Cellular Physiology and Biochemistry, 2015, 35, 406-418.	1.1	36
10	Upregulation of KCNQ1/KCNE1 K+channels by Klotho. Channels, 2014, 8, 222-229.	1.5	13
11	Upregulation of the Creatine Transporter Slc6A8 by Klotho. Kidney and Blood Pressure Research, 2014, 39, 516-525.	0.9	43
12	Down-Regulation of the Epithelial Na+ Channel ENaC by Janus kinase 2. Journal of Membrane Biology, 2014, 247, 331-338.	1.0	19
13	AMPK-sensitive cellular transport. Journal of Biochemistry, 2014, 155, 147-158.	0.9	29
14	Regulation of Cellular Transport by Klotho Protein. Current Protein and Peptide Science, 2014, 15, 828-835.	0.7	9
15	Downregulation of KCNQ4 by Janus Kinase 2. Journal of Membrane Biology, 2013, 246, 335-341.	1.0	21
16	Significance of the anti-aging protein Klotho. Molecular Membrane Biology, 2013, 30, 369-385.	2.0	46
17	Downregulation of the renal outer medullary K+ channel ROMK by the AMP-activated protein kinase. Pflugers Archiv European Journal of Physiology, 2013, 465, 233-245.	1.3	17
18	Down-Regulation of the Na ⁺ -Coupled Phosphate Transporter NaPi-IIa by AMP-Activated Protein Kinase. Kidney and Blood Pressure Research, 2013, 37, 547-556.	0.9	30

MENTOR SOPJANI

#	Article	IF	CITATIONS
19	Downregulation of the osmolyte transporters SMIT and BGT1 by AMP-activated protein kinase. Biochemical and Biophysical Research Communications, 2012, 422, 358-362.	1.0	11
20	AMPâ€activated protein kinase in BKâ€channel regulation and protection against hearing loss following acoustic overstimulation. FASEB Journal, 2012, 26, 4243-4253.	0.2	44
21	Regulation of KCNQ1/KCNE1 by β-catenin. Molecular Membrane Biology, 2012, 29, 87-94.	2.0	13
22	Regulation of Na+-coupled glucose carrier SGLT1 by human papillomavirus 18 E6 protein. Biochemical and Biophysical Research Communications, 2011, 404, 695-700.	1.0	23
23	Inhibition of Kir2.1 (KCNJ2) by the AMP-activated protein kinase. Biochemical and Biophysical Research Communications, 2011, 408, 505-510.	1.0	38
24	Regulation of the Na+ /K+ ATPase by Klotho. FEBS Letters, 2011, 585, 1759-1764.	1.3	36
25	Inhibition of Connexin 26 by the AMP-Activated Protein Kinase. Journal of Membrane Biology, 2011, 240, 151-158.	1.0	11
26	PKB/SGK-Resistant GSK3 Enhances Phosphaturia and Calciuria. Journal of the American Society of Nephrology: JASN, 2011, 22, 873-880.	3.0	26
27	Downregulation of NaPi-IIa and NaPi-IIb Na ⁺ -coupled Phosphate Transporters by Coexpression of Klotho. Cellular Physiology and Biochemistry, 2011, 28, 251-258.	1.1	81
28	Regulation of the Clutamate Transporters by JAK2. Cellular Physiology and Biochemistry, 2011, 28, 693-702.	1.1	38
29	Decreased bone density and increased phosphaturia in gene-targeted mice lacking functional serum- and glucocorticoid-inducible kinase 3. Kidney International, 2011, 80, 61-67.	2.6	29
30	Inhibition of the heterotetrameric K+channel KCNQ1/KCNE1 by the AMP-activated protein kinase. Molecular Membrane Biology, 2011, 28, 79-89.	2.0	34
31	Regulation of the Ca2+ Channel TRPV6 by the Kinases SGK1, PKB/Akt, and PIKfyve. Journal of Membrane Biology, 2010, 233, 35-41.	1.0	33
32	Downâ€regulation of Na ⁺ â€coupled glutamate transporter EAAT3 and EAAT4 by AMPâ€activated protein kinase. Journal of Neurochemistry, 2010, 113, 1426-1435.	2.1	27
33	The Serum and Glucocorticoid Inducible Kinases SGK1-3 Stimulate the Neutral Amino Acid Transporter SLC6A19. Cellular Physiology and Biochemistry, 2010, 25, 723-732.	1.1	53
34	60kDa Lysophospholipase, a New Sgk1 Molecular Partner Involved in the Regulation of ENaC. Cellular Physiology and Biochemistry, 2010, 26, 587-596.	1.1	34
35	Stimulation of Electrogenic Glucose Transport by Glycogen Synthase Kinase 3. Cellular Physiology and Biochemistry, 2010, 26, 641-646.	1.1	38
36	Regulation of Na ⁺ -coupled glucose carrier SGLT1 by AMP-activated protein kinase. Molecular Membrane Biology, 2010, 27, 137-144.	2.0	61

MENTOR SOPJANI

#	Article	IF	CITATIONS
37	Functional Analysis of a Novel I71N Mutation in the <i>GJB2</i> Gene Among Southern Egyptians Causing Autosomal Recessive Hearing Loss. Cellular Physiology and Biochemistry, 2010, 26, 959-966.	1.1	39
38	Inhibition of voltage-gated K ⁺ channels in dendritic cells by rapamycin. American Journal of Physiology - Cell Physiology, 2010, 299, C1379-C1385.	2.1	18
39	Rapamycin-induced phosphaturia. Nephrology Dialysis Transplantation, 2010, 25, 2938-2944.	0.4	38
40	Stimulation of Na+/K+ ATPase activity and Na+ coupled glucose transport by β-catenin. Biochemical and Biophysical Research Communications, 2010, 402, 467-470.	1.0	21
41	Regulation of the Glutamate Transporter EAAT2 by PIKfyve. Cellular Physiology and Biochemistry, 2009, 24, 361-368.	1.1	51
42	Silver ionâ€induced suicidal erythrocyte death. Journal of Applied Toxicology, 2009, 29, 531-536.	1.4	33
43	Stimulation of electrogenic intestinal dipeptide transport by the glucocorticoid dexamethasone. Pflugers Archiv European Journal of Physiology, 2009, 459, 191-202.	1.3	14
44	PIP5K2A-dependent regulation of excitatory amino acid transporter EAAT3. Psychopharmacology, 2009, 206, 429-435.	1.5	33
45	Regulation of erythrocyte survival by AMPâ€activated protein kinase. FASEB Journal, 2009, 23, 1072-1080.	0.2	180
46	Gold stimulates Ca2+ entry into and subsequent suicidal death of erythrocytes. Toxicology, 2008, 244, 271-279.	2.0	53
47	Vanadate-Induced Suicidal Erythrocyte Death. Kidney and Blood Pressure Research, 2008, 31, 87-93.	0.9	54
48	Suicidal Death of Erythrocytes Due to Selenium-Compounds. Cellular Physiology and Biochemistry, 2008, 22, 387-394.	1.1	42
49	Stimulation of Eryptosis by Cadmium Ions. Cellular Physiology and Biochemistry, 2008, 22, 245-252.	1.1	48