
Nuria Fiol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4400706/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of sorbent point zero charge: usefulness in sorption studies. Environmental Chemistry Letters, 2009, 7, 79-84.	8.3	432
2	Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 2004, 38, 992-1002.	5.3	394
3	Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Separation and Purification Technology, 2006, 50, 132-140.	3.9	384
4	Removal of lead(II) and cadmium(II) from aqueous solutions using grape stalk waste. Journal of Hazardous Materials, 2006, 133, 203-211.	6.5	280
5	The chemical composition of exhausted coffee waste. Industrial Crops and Products, 2013, 50, 423-429.	2.5	220
6	Mechanism of paracetamol removal by vegetable wastes: The contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Desalination, 2011, 270, 135-142.	4.0	136
7	Evaluation of an activated carbon from olive stones used as an adsorbent for heavy metal removal from aqueous phases. Comptes Rendus Chimie, 2015, 18, 88-99.	0.2	136
8	Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark. Bioresource Technology, 2008, 99, 5030-5036.	4.8	116
9	Arsenic removal by a waste metal (hydr)oxide entrapped into calcium alginate beads. Journal of Hazardous Materials, 2009, 164, 533-541.	6.5	108
10	Single and simultaneous adsorption of Cr(VI) and Cu (II) on a novel Fe3O4/pine cones gel beads nanocomposite: Experiments, characterization and isotherms modeling. Chemical Engineering Journal, 2021, 416, 129101.	6.6	76
11	Biosorption of Cr(VI) using low cost sorbents. Environmental Chemistry Letters, 2003, 1, 135-139.	8.3	60
12	Chemical characterization of different granulometric fractions of grape stalks waste. Industrial Crops and Products, 2013, 50, 494-500.	2.5	48
13	Reâ€use of Exhausted Ground Coffee Waste for Cr(VI) Sorption. Separation Science and Technology, 2008, 43, 582-596.	1.3	46
14	Green Synthesis of Ag Nanoparticles Using Grape Stalk Waste Extract for the Modification of Screen-Printed Electrodes. Nanomaterials, 2018, 8, 946.	1.9	46
15	TEMPO-oxidized cellulose nanofibers as potential Cu(II) adsorbent for wastewater treatment. Cellulose, 2019, 26, 903-916.	2.4	45
16	A new technology for the treatment of chromium electroplating wastewater based on biosorption. Journal of Water Process Engineering, 2016, 11, 143-151.	2.6	44
17	Preliminary studies on Cr(VI) removal from aqueous solution using grape stalk wastes encapsulated in calcium alginate beads in a packed bed up-flow column. Reactive and Functional Polymers, 2006, 66, 795-807.	2.0	41
18	Extraction of espresso coffee by using gradient of temperature. Effect on physicochemical and sensorial characteristics of espresso. Food Chemistry, 2017, 214, 622-630.	4.2	41

Nuria Fiol

#	Article	IF	CITATIONS
19	A proposal for the sustainable treatment and valorisation of olive mill wastes. Journal of Environmental Chemical Engineering, 2019, 7, 102803.	3.3	38
20	Chromium (VI) uptake by grape stalks wastes encapsulated in calcium alginate beads: equilibrium and kinetics studies. Chemical Speciation and Bioavailability, 2004, 16, 25-33.	2.0	36
21	Modelling synergistic sorption of Cr(VI), Cu(II) and Ni(II) onto exhausted coffee wastes from binary mixtures Cr(VI)–Cu(II) and Cr(VI)–Ni(II). Chemical Engineering Journal, 2013, 230, 396-405.	6.6	29
22	Effect of chromium speciation on its sorption mechanism onto grape stalks entrapped into alginate beads. Arabian Journal of Chemistry, 2017, 10, S1293-S1302.	2.3	29
23	Copper(II) and nickel(II) uptake from aqueous solutions by cork wastes: a NMR and potentiometric study. Polyhedron, 2002, 21, 1363-1367.	1.0	27
24	New insights into the interactions between cork chemical components and pesticides. The contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Chemosphere, 2015, 119, 863-870.	4.2	26
25	Chromium sorption on grape stalks encapsulated in calcium alginate beads. Environmental Chemistry Letters, 2006, 4, 239-242.	8.3	24
26	Metal and metal oxide nanoparticles: An integrated perspective of the green synthesis methods by natural products and waste valorization: applications and challenges. Comprehensive Analytical Chemistry, 2021, , 433-469.	0.7	24
27	Grape Stalks Waste as Low Cost Biosorbents: An Alternative for Metal Removal from Aqueous Solutions. Solvent Extraction and Ion Exchange, 2008, 26, 261-270.	0.8	23
28	Modeling of kinetics of Cr(VI) sorption onto grape stalk waste in a stirred batch reactor. Journal of Hazardous Materials, 2009, 170, 286-291.	6.5	23
29	The Role of Exhausted Coffee Compounds on Metal Ions Sorption. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	22
30	New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions. Science of the Total Environment, 2016, 541, 101-108.	3.9	22
31	Grape Stalks Wastes Encapsulated in Calcium Alginate Beads for Cr(VI) Removal from Aqueous Solutions. Separation Science and Technology, 2005, 40, 1013-1028.	1.3	20
32	REMOVAL OF CHROMIUM (VI) IN AQUEOUS ENVIRONMENTS USING CORK AND HEAT-TREATED CORK SAMPLES FROM QUERCUS CERRIS AND QUERCUS SUBER. BioResources, 2012, 7, .	0.5	17
33	Vegetable waste-based sensors for metal ion determination. Sensors and Actuators B: Chemical, 2007, 122, 187-194.	4.0	16
34	Comparative assessment of cellulose nanofibers and calcium alginate beads for continuous Cu(II) adsorption in packed columns: the influence of water and surface hydrophobicity. Cellulose, 2021, 28, 4327-4344.	2.4	12
35	Single and binary adsorption of some heavy metal ions from aqueous solutions by activated carbon derived from olive stones. Desalination and Water Treatment, 0, , 1-7.	1.0	8
36	The kinetics of copper sorption onto yohimbe bark wastes. International Journal of Environment and Pollution, 2008, 34, 215.	0.2	6

Nuria Fiol

#	Article	IF	CITATIONS
37	Binding interactions between suberin monomer components and pesticides. Science of the Total Environment, 2015, 527-528, 159-164.	3.9	6
38	Application of Anodic Stripping Voltammetry to assess sorption performance of an industrial waste entrapped in alginate beads to remove As(V). Arabian Journal of Chemistry, 2017, 10, S1014-S1021.	2.3	6
39	Valorisation of Lignocellulosic Biomass Wastes for the Removal of Metal Ions from Aqueous Streams: A Review. , 2017, , .		6
40	Metal Ion Uptake from Aqueous Solution by Olive Stones: A Carbonâ€13 Solidâ€6tate Nuclear Magnetic Resonance and Potentiometric Study. Water Environment Research, 2007, 79, 2363-2367.	1.3	4
41	Use of Cyclic Voltammetry to Evaluate Sorption Properties of Cork Residues Towards Mn(II) in Waters. Journal of Solution Chemistry, 2008, 37, 477-485.	0.6	4
42	A fast and easy approach to the simulation of binary mixtures sorption kinetics. Science of the Total Environment, 2018, 616-617, 948-959.	3.9	4
43	New Insights into the Role of Chemical Components on Metal Ions Sorption by Grape Stalks Waste. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	2
44	Assessment of vegetable wastes for basic violet 14 removal: role of sorbent surface chemistry and porosity. Desalination and Water Treatment, 2015, 53, 2278-2288.	1.0	2
45	Low Cost Materials for Metal Uptake from Aqueous Solutions. , 2005, , 251-258.		1