Krishna P Katuri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4400485/publications.pdf

Version: 2024-02-01

52 papers 3,524 citations

147726 31 h-index 50 g-index

54 all docs

54 docs citations

54 times ranked 3557 citing authors

#	Article	IF	CITATIONS
1	Resistance assessment of microbial electrosynthesis for biochemical production to changes in delivery methods and CO2 flow rates. Bioresource Technology, 2021, 319, 124177.	4.8	30
2	Enrichment of salt-tolerant CO2â€"fixing communities in microbial electrosynthesis systems using porous ceramic hollow tube wrapped with carbon cloth as cathode and for CO2 supply. Science of the Total Environment, 2021, 766, 142668.	3.9	17
3	Harnessing the Extracellular Electron Transfer Capability of <i>Geobacter sulfurreducens</i> for Ambient Synthesis of Stable Bifunctional Singleâ€Atom Electrocatalyst for Water Splitting. Advanced Functional Materials, 2021, 31, 2010916.	7.8	11
4	Competition of two highly specialized and efficient acetoclastic electroactive bacteria for acetate in biofilm anode of microbial electrolysis cell. Npj Biofilms and Microbiomes, 2021, 7, 47.	2.9	16
5	Electrochemical Energy Storage: Harnessing the Extracellular Electron Transfer Capability of ⟨i⟩Geobacter sulfurreducens⟨li⟩ for Ambient Synthesis of Stable Bifunctional Singleâ€Atom Electrocatalyst for Water Splitting (Adv. Funct. Mater. 22/2021). Advanced Functional Materials, 2021, 31. 2170161.	7.8	O
6	Coupling anaerobic fluidized membrane bioreactors with microbial electrolysis cells towards improved wastewater reuse and energy recovery. Journal of Environmental Chemical Engineering, 2021, 9, 105974.	3.3	7
7	Electroactive biofilms on surface functionalized anodes: The anode respiring behavior of a novel electroactive bacterium, Desulfuromonas acetexigens. Water Research, 2020, 185, 116284.	5.3	36
8	Effects of set cathode potentials on microbial electrosynthesis system performance and biocathode methanogen function at a metatranscriptional level. Scientific Reports, 2020, 10, 19824.	1.6	13
9	Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria. Nature Communications, 2020, 11, 2058.	5.8	168
10	Synthesis of an amorphous <i>Geobacter</i> -manganese oxide biohybrid as an efficient water oxidation catalyst. Green Chemistry, 2020, 22, 5610-5618.	4.6	11
11	Evidence of Spatial Homogeneity in an Electromethanogenic Cathodic Microbial Community. Frontiers in Microbiology, 2019, 10, 1747.	1.5	19
12	Bioinspired Synthesis of Reduced Graphene Oxide-Wrapped <i>Geobacter sulfurreducens</i> as a Hybrid Electrocatalyst for Efficient Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 3686-3693.	3.2	47
13	The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects. Current Opinion in Biotechnology, 2019, 57, 101-110.	3.3	92
14	Effect of specific cathode surface area on biofouling in an anaerobic electrochemical membrane bioreactor: Novel insights using high-speed video camera. Journal of Membrane Science, 2019, 577, 176-183.	4.1	20
15	Draft Genome Sequence of Methanobacterium sp. Strain 34x, Reconstructed from an Enriched Electromethanogenic Biocathode. Microbiology Resource Announcements, 2019, 8, .	0.3	2
16	Enrichment of Marinobacter sp. and Halophilic Homoacetogens at the Biocathode of Microbial Electrosynthesis System Inoculated With Red Sea Brine Pool. Frontiers in Microbiology, 2019, 10, 2563.	1.5	24
17	Dualâ€Function Electrocatalytic and Macroporous Hollowâ€Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems. Advanced Materials, 2018, 30, e1707072.	11.1	100
18	Electrochemically active polymeric hollow fibers based on poly(ether-b-amide)/carbon nanotubes. Journal of Membrane Science, 2018, 545, 323-328.	4.1	15

#	Article	IF	CITATIONS
19	Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis. Advanced Functional Materials, 2018, 28, 1804860.	7.8	122
20	Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO ₂ using <i>Sporomusa ovata</i> . Journal of Materials Chemistry A, 2018, 6, 17201-17211.	5.2	100
21	Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresource Technology, 2017, 239, 82-86.	4.8	43
22	Photoanodes: Vastly Enhanced BiVO ₄ Photocatalytic OER Performance by NiCoO ₂ as Cocatalyst (Adv. Mater. Interfaces 19/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	0
23	Vastly Enhanced BiVO ₄ Photocatalytic OER Performance by NiCoO ₂ as Cocatalyst. Advanced Materials Interfaces, 2017, 4, 1700540.	1.9	92
24	Temporal Microbial Community Dynamics in Microbial Electrolysis Cells – Influence of Acetate and Propionate Concentration. Frontiers in Microbiology, 2017, 8, 1371.	1.5	27
25	Draft Genome Sequence of Desulfuromonas acetexigens Strain 2873, a Novel Anode-Respiring Bacterium. Genome Announcements, 2017, 5, .	0.8	10
26	Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells. Scientific Reports, 2016, 6, 38690.	1.6	54
27	Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate. Applied Microbiology and Biotechnology, 2016, 100, 5999-6011.	1.7	56
28	A Microfiltration Polymerâ€Based Hollowâ€Fiber Cathode as a Promising Advanced Material for Simultaneous Recovery of Energy and Water. Advanced Materials, 2016, 28, 9504-9511.	11.1	35
29	Graphene-Coated Hollow Fiber Membrane as the Cathode in Anaerobic Electrochemical Membrane Bioreactors – Effect of Configuration and Applied Voltage on Performance and Membrane Fouling. Environmental Science & Technology, 2016, 50, 4439-4447.	4.6	100
30	A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow-fiber Membrane for Treatment of Low-Organic Strength Solutions. Environmental Science & Emp; Technology, 2014, 48, 12833-12841.	4.6	183
31	Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness. Physical Chemistry Chemical Physics, 2014, 16, 9039-9046.	1.3	56
32	Arylamine functionalization of carbon anodes for improved microbial electrocatalysis. RSC Advances, 2013, 3, 18759.	1.7	11
33	A Hybrid Microbial Fuel Cell Membrane Bioreactor with a Conductive Ultrafiltration Membrane Biocathode for Wastewater Treatment. Environmental Science & Technology, 2013, 47, 11821-11828.	4.6	142
34	Catalytic response of microbial biofilms grown under fixed anode potentials depends on electrochemical cell configuration. Chemical Engineering Journal, 2013, 230, 532-536.	6.6	36
35	Does bioelectrochemical cell configuration and anode potential affect biofilm response?. Biochemical Society Transactions, 2012, 40, 1308-1314.	1.6	27
36	Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater. Bioelectrochemistry, 2012, 87, 164-171.	2.4	99

#	Article	IF	CITATIONS
37	Charge Transport through <i>Geobacter sulfurreducens</i> Biofilms Grown on Graphite Rods. Langmuir, 2012, 28, 7904-7913.	1.6	62
38	Three-dimensional microchanelled electrodes in flow-through configuration for bioanode formation and current generation. Energy and Environmental Science, 2011, 4, 4201.	15.6	112
39	Evaluation of hydrolysis and fermentation rates in microbial fuel cells. Applied Microbiology and Biotechnology, 2011, 90, 789-798.	1.7	59
40	Microbial fuel cells meet with external resistance. Bioresource Technology, 2011, 102, 2758-2766.	4.8	171
41	On the dynamic response of the anode in microbial fuel cells. Enzyme and Microbial Technology, 2011, 48, 351-358.	1.6	21
42	Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities. Applied Microbiology and Biotechnology, 2010, 87, 1699-1713.	1.7	59
43	Modelling microbial fuel cells with suspended cells and added electron transfer mediator. Journal of Applied Electrochemistry, 2010, 40, 151-162.	1.5	66
44	Electricity generation from the treatment of wastewater with a hybrid upâ€flow microbial fuel cell. Biotechnology and Bioengineering, 2010, 107, 52-58.	1.7	30
45	Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry. Chemical Communications, 2010, 46, 4758.	2.2	160
46	Laccase-membrane reactors for decolorization of an acid azo dye in aqueous phase: Process optimization. Water Research, 2009, 43, 3647-3658.	5. 3	89
47	Continuous Feed Microbial Fuel Cell Using An Air Cathode and A Disc Anode Stack for Wastewater Treatment. Energy & Samp; Fuels, 2009, 23, 5707-5716.	2.5	27
48	A computational model for biofilm-based microbial fuel cells. Water Research, 2007, 41, 2921-2940.	5. 3	381
49	Laccase production by Pleurotus ostreatus 1804: Optimization of submerged culture conditions by Taguchi DOE methodology. Biochemical Engineering Journal, 2005, 24, 17-26.	1.8	108
50	Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochemistry, 2005, 40, 2849-2857.	1.8	131
51	Treatment of complex chemical wastewater in a sequencing batch reactor (SBR) with an aerobic suspended growth configuration. Process Biochemistry, 2005, 40, 1501-1508.	1.8	78
52	Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochemistry, 2004, 39, 951-956.	1.8	149