Isao Ohkubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4400383/publications.pdf

Version: 2024-02-01

201674 144013 3,321 81 27 57 h-index citations g-index papers 82 82 82 3906 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	New record high thermoelectric ZT of delafossite-based CuCrO2 thin films obtained by simultaneously reducing electrical resistivity and thermal conductivity via heavy doping with controlled residual stress. Applied Surface Science, 2022, 583, 152526.	6.1	5
2	Rational Design of 3d Transition-Metal Compounds for Thermoelectric Properties by Using Periodic Trends in Electron-Correlation Modulation. Journal of the American Chemical Society, 2022, 144, 3590-3602.	13.7	7
3	Miniaturized in-plane π-type thermoelectric device composed of a II–IV semiconductor thin film prepared by microfabrication. Materials Today Energy, 2022, 28, 101075.	4.7	13
4	Realization of closed-loop optimization of epitaxial titanium nitride thin-film growth via machine learning. Materials Today Physics, 2021, 16, 100296.	6.0	22
5	Improvement of power factor in the room temperature range of Mg ₂ Sn _{1â^x} Ge _x . Japanese Journal of Applied Physics, 2021, 60, SBBF06.	1.5	6
6	Control of Competing Thermodynamics and Kinetics in Vapor Phase Thin-Film Growth of Nitrides and Borides. Frontiers in Chemistry, 2021, 9, 642388.	3.6	4
7	High power factor in epitaxial Mg2Sn thin films via Ga doping. Applied Physics Letters, 2021, 119, .	3.3	8
8	dz2 orbital character of polyhedra in complex solid-state transition-metal compounds. Dalton Transactions, 2020, 49, 431-437.	3.3	3
9	Screening of transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and rare-earth (La and Pr) elements as potential effective dopants for thermoelectric GeTe – an experimental and theoretical appraisal. Journal of Materials Chemistry A, 2020, 8, 19805-19821.	10.3	43
10	Drastic power factor improvement by Te doping of rare earth-free CoSb3-skutterudite thin films. RSC Advances, 2020, 10, 21129-21135.	3.6	14
11	Development of thermoelectric thin films and characterization methods. Journal of Physics: Conference Series, 2019, 1407, 012055.	0.4	1
12	Fabrication of Mg2Sn(111) film by molecular beam epitaxy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	8
13	Thermoelectric materials and applications for energy harvesting power generation. Science and Technology of Advanced Materials, 2018, 19, 836-862.	6.1	413
14	Rapid deposition and thermoelectric properties of ytterbium boride thin films using hybrid physical chemical vapor deposition. Materialia, 2018, 1, 244-248.	2.7	12
15	Thermoelectric properties of boron carbide/HfB2 composites. Materials for Renewable and Sustainable Energy, 2017, 6, 1.	3.6	22
16	Comparative Study of Exchange–Correlation Functional and Potential for Evaluating Thermoelectric Transport Properties in <i>d< i>^{0< sup> Perovskite Oxides. Journal of the Physical Society of Japan, 2017, 86, 074705.}</i>	1.6	6
17	Anisotropic thermoelectric properties in layered complex nitrides with α-NaFeO ₂ -type structure. APL Materials, 2016, 4, 104808.	5.1	12
18	Deposition of thermoelectric strontium hexaboride thin films by a low pressure CVD method. Journal of Crystal Growth, 2016, 449, 10-14.	1.5	22

#	ARTICLE ath	IF	CITATIONS
19	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Mis*xmmi:mi>A-site-driven ferroelectricity in strained ferromagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/Mt"><mml:msub><mml:mi mathvariant="normal">La<mml:mn></mml:mn></mml:mi </mml:msub><mml:mi< td=""><td>3.2</td><td>42</td></mml:mi<></mml:math 	3.2	42
20	Origin of Projected Excellent Thermoelectric Transport Properties in d ⁰ â€Electron AMN ₂ (A = Sr or Ba; M = Ti, Zr, Hf) Layered Complex Metal Nitrides. European Journal of Inorganic Chemistry, 2015, 2015, 3715-3722.	2.0	12
21	Anisotropic Anomalies of Thermoelectric Transport Properties and Electronic Structures in Layered Complex Nitrides AMN ₂ (A = Na, Cu; M = Ta, Nb). Chemistry of Materials, 2015, 27, 7265-7275.	6.7	30
22	ZrC epitaxy on Si(111). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, 061512.	2.1	1
23	Two-Dimensional Layered Complex Nitrides as a New Class of Thermoelectric Materials. Chemistry of Materials, 2014, 26, 2532-2536.	6.7	39
24	Three-Dimensionality of Electronic Structures and Thermoelectric Transport in SrZrN2 and SrHfN2 Layered Complex Metal Nitrides. Inorganic Chemistry, 2014, 53, 8979-8984.	4.0	15
25	Infrared anomalous Hall effect in CaxSr1â^'xRuO3films. Physical Review B, 2013, 88, .	3.2	4
26	Seebeck Coefficient and Electrical Resistivity of Single Crystal B ₁₂ As ₂ at High Temperatures. Journal of the Physical Society of Japan, 2013, 82, 095001.	1.6	10
27	Spin-Filter Tunnel Junction with Matched Fermi Surfaces. Physical Review Letters, 2012, 109, 076602.	7.8	25
28	Spintronics: Large Tunnel Magnetoresistance in Epitaxial Oxide Spinâ€Filter Tunnel Junctions (Adv.) Tj ETQq0 0 (0 rgBT/Ον 14.9	verlock 10 Tf 5
29	Large Tunnel Magnetoresistance in Epitaxial Oxide Spinâ€Filter Tunnel Junctions. Advanced Functional Materials, 2012, 22, 4471-4475.	14.9	13
30	Modulation of the ferromagnetic insulating phase in Pr _{0.8} Ca _{0.2} MnO ₃ by Co substitution. Physica Status Solidi - Rapid Research Letters, 2011, 5, 34-36.	2.4	7
31	Characterization of ferromagnetism around interfaces by rearâ€incident magnetoâ€optic Kerr effect. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 900-903.	1.8	O
32	Formation of transition layers at metal/perovskite oxide interfaces showing resistive switching behaviors. Journal of Applied Physics, 2011, 110, 053707.	2.5	25
33	Influence of substrates on epitaxial growth of B-site-ordered perovskite La2NiMnO6 thin films. Journal of Applied Physics, 2011, 110, .	2.5	17
34	Chemical trend of Fermi-level shift in transition metal-doped TiO2 films. Journal of the Ceramic Society of Japan, 2010, 118, 993-996.	1.1	15
35	Device size dependence of resistance switching performance in metal/manganite/metal trilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 173, 3-6.	3. 5	1
36	Interfacial chemical states of resistance-switching metal/Pr0.7Ca0.3MnO3 interfaces. Applied Physics Letters, 2010, 97, .	3.3	48

#	Article	IF	Citations
37	Infrared anomalous Hall effect in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SrRuO</mml:mtext></mml:mrow><mml:m .<="" 2010,="" 81,="" b,="" behavior.="" crossover="" evidence="" exploring="" for="" intrinsic="" physical="" review="" td="" to=""><td>n 83≥ /mml</td><td>:mb></td></mml:m></mml:msub></mml:mrow></mml:math>	n 83 ≥ /mml	:mb>
38	Ferromagnetic properties of epitaxial La2NiMnO6 thin films grown by pulsed laser deposition. Applied Physics Letters, 2009, 94, .	3.3	49
39	Electronic structure characterization of La2NiMnO6 epitaxial thin films using synchrotron-radiation photoelectron spectroscopy and optical spectroscopy. Applied Physics Letters, 2009, 94, .	3.3	43
40	Dependence of Magnetic Properties on Laser Ablation Conditions for Epitaxial La _{0.6} Sr _{0.4} MnO ₃ Thin Films Grown by Pulsed Laser Deposition. Materials Transactions, 2009, 50, 1081-1084.	1.2	1
41	Combinatorial Fabrications and Electronic-state Evaluations of Functional Complex Metal Oxides. Hyomen Kagaku, 2009, 30, 2-6.	0.0	0
42	Field-induced resistance switching at metal/perovskite manganese oxide interface. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 13-15.	3.5	5
43	Modification of reflection high-energy electron diffraction system for in situ monitoring of oxide epitaxy at high oxygen pressure. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 16-18.	3.5	3
44	Electrode dependence and film resistivity effect in the electric-field-induced resistance-switching phenomena in epitaxial NiO films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 148, 40-42.	3.5	15
45	Trap-controlled space-charge-limited current mechanism in resistance switching at Alâ^•Pr0.7Ca0.3MnO3 interface. Applied Physics Letters, 2008, 92, .	3.3	106
46	Epitaxial growth and surface metallic nature of LaNiO3 thin films. Applied Physics Letters, 2008, 92, .	3.3	52
47	Interfacial electronic structure of SrTiO3â^•SrRuO3 heterojuctions studied by in situ photoemission spectroscopy. Applied Physics Letters, 2008, 92, 122105.	3.3	9
48	<i>InÂSitu</i> Photoemission Study of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Pr</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'<td>>₹ı®ıml:mi</td><td>>x\$/mml:mi></td></mml:mo></mml:mrow></mml:msub></mml:math>	> ₹ı®ıml: mi	> x \$/mml:mi>
49	Publisher's Note: Determination of the infrared complex magnetoconductivity tensor in itinerant ferromagnets from Faraday and Kerr measurements [Phys. Rev. B75, 214416 (2007)]. Physical Review B, 2007, 76, .	3.2	0
50	Determination of the infrared complex magnetoconductivity tensor in itinerant ferromagnets from Faraday and Kerr measurements. Physical Review B, 2007, 75, .	3.2	28
51	Composition dependence of the anomalous Hall effect inCaxSr1â^'xRuO3films. Physical Review B, 2007, 76, .	3.2	16
52	Band diagrams of spin tunneling junctions La0.6Sr0.4MnO3â^•Nb:SrTiO3 and SrRuO3â^•Nb:SrTiO3 determined by in situ photoemission spectroscopy. Applied Physics Letters, 2007, 90, 132123.	3.3	68
53	High-Throughput Characterization of Metal Electrode Performance for Electric-Field-Induced Resistance Switching in Metal/Pr0.7Ca0.3MnO3/Metal Structures. Advanced Materials, 2007, 19, 1711-1713.	21.0	88
54	In situ photoemission study of epitaxial thin films. Journal of Magnetism and Magnetic Materials, 2007, 310, 963-965.	2.3	3

#	Article	IF	Citations
55	Transport and magnetic properties of Pr1â^'xCaxMnO3 epitaxial films grown on LaAlO3 substrates. Journal of Magnetism and Magnetic Materials, 2007, 310, 2237-2238.	2.3	6
56	Ferromagnetism stabilization of ultrathin SrRuO3 films: Thickness-dependent physical properties. Journal of Applied Physics, 2006, 99, 08N505.	2.5	27
57	Epitaxial ScAlMgO4(0001) films grown on sapphire substrates by flux-mediated epitaxy. Applied Physics Letters, 2006, 89, 191910.	3.3	9
58	Dielectric and optical properties of epitaxial rare-earth scandate films and their crystallization behavior. Applied Physics Letters, 2006, 88, 262906.	3.3	74
59	Thickness-dependent electronic structure of ultrathin SrRuO3 films studied by in situ photoemission spectroscopy. Applied Physics Letters, 2005, 87, 162508.	3.3	123
60	A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes. Measurement Science and Technology, 2005, 16, 21-31.	2.6	20
61	High-throughput growth temperature optimization of ferroelectric SrxBa1â^xNb2O6 epitaxial thin films using a temperature gradient method. Applied Physics Letters, 2004, 84, 1350-1352.	3.3	31
62	Continuous composition-spread thin films of transition metal oxides by pulsed-laser deposition. Applied Surface Science, 2004, 223, 35-38.	6.1	49
63	Highly c-oriented RuSr2(Eu1.5Ce0.5)Cu2O10â^î thin film growth by pulsed laser deposition and subsequent post-annealing. Physica C: Superconductivity and Its Applications, 2004, 403, 21-24.	1.2	8
64	Evolution of transport and magnetic properties near the ferromagnetic quantum critical point in the series CaxSr1 \hat{a} °xRuO3. Physical Review B, 2004, 70, .	3.2	62
65	Simultaneous Z-Contrast and Phase Contrast Imaging of Oxygen in Ceramic Interfaces. Microscopy and Microanalysis, 2004, 10, 256-257.	0.4	8
66	Synthesis of epitaxial Y-type magnetoplumbite thin films by quick optimization with combinatorial pulsed laser deposition. Journal of Crystal Growth, 2003, 247, 105-109.	1.5	13
67	High Mobility Thin Film Transistors with Transparent ZnO Channels. Japanese Journal of Applied Physics, 2003, 42, L347-L349.	1.5	267
68	An improved continuous compositional-spread technique based on pulsed-laser deposition and applicable to large substrate areas. Review of Scientific Instruments, 2003, 74, 4058-4062.	1.3	49
69	Fabrication of spin-frustrated Sm2Mo2O7 epitaxial films: High throughput optimization using a temperature gradient method. Applied Physics Letters, 2003, 82, 1571-1573.	3.3	11
70	Heteroepitaxial growth of Î ² -LiGaO2 thin films on ZnO. Journal of Applied Physics, 2002, 92, 5587-5589.	2.5	28
71	Quick optimization of Y-type magnetoplumbite thin films growth by combinatorial pulsed laser deposition technique. Applied Surface Science, 2002, 197-198, 312-315.	6.1	2
72	Characterization of Magnetic and Dielectric Properties on Y-Type Magnetoplumbite Epitaxial thin Films for High Frequency Application. Materials Research Society Symposia Proceedings, 2001, 700, 2101.	0.1	1

#	Article	lF	CITATION
73	Pulsed Laser Epitaxy and Magnetic Properties of Single Phase Y-Type Magnetoplumbite Thin Films. Japanese Journal of Applied Physics, 2001, 40, L1343-L1345.	1.5	9
74	Investigation of ZnO/sapphire interface and formation of ZnO nanocrystalline by laser MBE. Applied Surface Science, 2000, 159-160, 514-519.	6.1	59
75	Analysis of the polar direction of GaN film growth by coaxial impact collision ion scattering spectroscopy. Applied Physics Letters, 1999, 75, 674-676.	3.3	110
76	In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire. Surface Science, 1999, 443, L1043-L1048.	1.9	94
77	Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices. Applied Physics Letters, 1999, 75, 980-982.	3.3	377
78	Thermal stability of supersaturated MgxZn1â^'xO alloy films and MgxZn1â^'xO/ZnO heterointerfaces. Applied Physics Letters, 1999, 75, 4088-4090.	3.3	142
79	Fabrication of alloys and superlattices based on ZnO towards ultraviolet laser. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 263-266.	3.5	118
80	Coaxial impact-collision ion scattering spectroscopy analysis of ZnO thin films and single crystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 256-262.	3.5	24
81	Excitonic ultraviolet laser emission at room temperature from naturally made cavity in ZnO nanocrytal thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 56, 239-245.	3.5	162