
Sougata Santra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4400197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of imidazo[1,2-a]pyridines: a decade update. Chemical Communications, 2015, 51, 1555-1575.	4.1	524
2	Copperâ€Catalyzed Synthesis of Imidazo[1,2â€ <i>a</i>]pyridines through Tandem Imine Formationâ€Oxidative Cyclization under Ambient Air: Oneâ€Step Synthesis of Zolimidine on a Gramâ€Scale. Advanced Synthesis and Catalysis, 2013, 355, 1741-1747.	4.3	220
3	A decade update on solvent and catalyst-free neat organic reactions: a step forward towards sustainability. Green Chemistry, 2016, 18, 4475-4525.	9.0	185
4	Iron(III)â€Catalyzed Cascade Reaction between Nitroolefins and 2â€Aminopyridines: Synthesis of Imidazo[1,2â€ <i>a</i>]pyridines and Easy Access towards Zolimidine. Advanced Synthesis and Catalysis, 2013, 355, 1065-1070.	4.3	161
5	Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coordination Chemistry Reviews, 2017, 353, 1-57.	18.8	136
6	Ball milling: an efficient and green approach for asymmetric organic syntheses. Green Chemistry, 2020, 22, 302-315.	9.0	135
7	BrÃ,nsted acidic ionic liquid-catalyzed tandem reaction: an efficient approach towards regioselective synthesis of pyrano[3,2-c]coumarins under solvent-free conditions bearing lower E-factors. Green Chemistry, 2017, 19, 3282-3295.	9.0	67
8	Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. Advanced Synthesis and Catalysis, 2019, 361, 2161-2214.	4.3	67
9	FeCl ₃ -Catalyzed Cross-Dehydrogenative Coupling between Imidazoheterocycles and Oxoaldehydes. Journal of Organic Chemistry, 2016, 81, 10088-10093.	3.2	65
10	Organocatalysis by an aprotic imidazolium zwitterion: regioselective ring-opening of aziridines and applicable to gram scale synthesis. Green Chemistry, 2016, 18, 565-574.	9.0	58
11	Nano indium oxide: an efficient catalyst for the synthesis of 1,2-disubstituted benzimidazoles in aqueous media. Tetrahedron Letters, 2012, 53, 1974-1977.	1.4	57
12	Nano-indium oxide: An efficient catalyst for one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones with a greener prospect. Catalysis Communications, 2014, 49, 52-57.	3.3	56
13	Iron(III)-catalyzed three-component domino strategy for the synthesis of imidazo[1,2-a]pyridines. Tetrahedron Letters, 2014, 55, 5151-5155.	1.4	51
14	<i>N,N</i> â€Dimethylformamide as a Methylenating Reagent: Synthesis of Heterodiarylmethanes <i>via</i> Copperâ€Catalyzed Coupling between Imidazo[1,2â€ <i>a</i>]pyridines and Indoles/ <i>N,N</i> â€Dimethylaniline. Advanced Synthesis and Catalysis, 2016, 358, 3633-3641.	4.3	46
15	Fluorescent Detection of 2,4â€DNT and 2,4,6â€TNT in Aqueous Media by Using Simple Waterâ€Soluble Pyrene Derivatives. Chemistry - an Asian Journal, 2016, 11, 775-781.	3.3	44
16	Studies on the interactions of 5- <i>R</i> -3-(2-pyridyl)-1,2,4-triazines with arynes: inverse demand aza-Diels–Alder reaction <i>versus</i> aryne-mediated domino process. Organic and Biomolecular Chemistry, 2018, 16, 5119-5135.	2.8	43
17	Solvent-free synthesis of 5-(aryl/alkyl)amino-1,2,4-triazines and α-arylamino-2,2′-bipyridines with greener prospects. RSC Advances, 2017, 7, 9610-9619.	3.6	39
18	Visible-Light-Induced Regioselective C(sp ³)-H Acyloxylation of Aryl-2 <i>H-</i> azirines with (Diacetoxy)iodobenzene. Journal of Organic Chemistry, 2019, 84, 11735-11740.	3.2	37

#	Article	IF	CITATIONS
19	Metal nanoparticles in "on-water―organic synthesis: one-pot nano CuO catalyzed synthesis of isoindolo[2,1-a]quinazolines. RSC Advances, 2013, 3, 24931.	3.6	35
20	Diversified Synthesis of Furans by Coupling between Enols/1,3â€Dicarbonyl Compounds and Nitroolefins: Direct Access to Dioxa[5]helicenes. Chemistry - an Asian Journal, 2015, 10, 2525-2536.	3.3	35
21	Extended cavity pyrene-based iptycenes for the turn-off fluorescence detection of RDX and common nitroaromatic explosives. New Journal of Chemistry, 2017, 41, 2309-2320.	2.8	29
22	Mechanochemical Synthesis and Antimicrobial Studies of 4-Hydroxy-3-thiomethylcoumarins Using Imidazolium Zwitterionic Molten Salt as an Organocatalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 5557-5569.	6.7	29
23	Task-specific ionic liquid-catalyzed efficient couplings of indoles with 1,3-dicarbonyl compounds: an efficient synthesis of 3-alkenylated indoles. Tetrahedron Letters, 2011, 52, 3825-3827.	1.4	26
24	Zwitterionic Imidazolium Salt: Recent Advances in Organocatalysis. Synthesis, 2016, 48, 1269-1285.	2.3	26
25	Metalâ€Free, PhI(OAc) ₂ â€Promoted Oxidative C(<i>sp</i> ^{<i>2</i>})â^'H Difunctionalization: Synthesis of Thioaminated Naphthoquinones. Advanced Synthesis and Catalysis, 2021, 363, 5300-5309.	4.3	25
26	3-Cyano-2-azaanthracene-based "push-pull―fluorophores: A one-step preparation from 5-cyano-1,2,4-triazines and 2,3-dehydronaphthalene, generated in situ. Tetrahedron Letters, 2016, 57, 5639-5643.	1.4	24
27	Direct Asymmetric Arylation of Imines. Advanced Synthesis and Catalysis, 2020, 362, 4293-4324.	4.3	24
28	Diverse synthesis of pyrano[3,2-c]coumarins: a brief update. New Journal of Chemistry, 2020, 44, 18980-18993.	2.8	23
29	A one-pot approach to 10-(1 H -1,2,3-triazol-1-yl)pyrimido[1,2- a]indoles via aryne-mediated transformations of 3-(pyrimidin-2-yl)-1,2,4-triazines. Tetrahedron Letters, 2016, 57, 3862-3865.	1.4	22
30	Conversion of aziridines to oxazolidines through geminal difunctionalization of vinyl arenes or by tandem ring-opening/closing reaction of aziridine itself. Tetrahedron Letters, 2016, 57, 3551-3555.	1.4	22
31	6â€Arylaminoâ€2,2′â€bipyridine "Pushâ€Pull―Fluorophores: Solventâ€Free Synthesis and Photophysical S ChemistrySelect, 2018, 3, 4141-4146.	Studies. 1.5	22
32	One-pot multicomponent synthesis of polyhydroquinolines under catalyst and solvent-free conditions. Green Chemistry Letters and Reviews, 2012, 5, 97-100.	4.7	20
33	Synthesis of polysubstituted quinolines via copper(ii)-catalyzed annulation of 2-aminoaryl ketones with alkynoates. RSC Advances, 2013, 3, 24034.	3.6	20
34	Mild, Efficient, and Metal-Free Radical 1,2-Dithiocyanation of Alkynes and Alkenes at Room Temperature. ACS Omega, 2018, 3, 13081-13088.	3.5	20
35	Imidazolium Zwitterionic Molten Salt: An Efficient Organocatalyst under Neat Conditions at Room Temperature for the Synthesis of Dipyrromethanes as well as Bis(indolyl)methanes. ChemistrySelect, 2018, 3, 5843-5847.	1.5	20
36	Iodine–TBHP mediated efficient synthesis of α-ketoamides from vinyl azides and amines under mild conditions. Organic and Biomolecular Chemistry, 2022, 20, 3907-3912.	2.8	20

#	Article	IF	CITATIONS
37	Combination of NH2OH·HCl and NalO4: a new and mild oxidizing agent for selective oxidation of alcohols to carbonyl compounds. Tetrahedron Letters, 2012, 53, 4433-4435.	1.4	19
38	The Remarkable Cooperative Effect of a BrĄ̃,nstedâ€Acidic Ionic Liquid in the Cyclization of 2â€Aminobenzamides with Ketones. European Journal of Organic Chemistry, 2017, 2017, 4955-4962.	2.4	19
39	Metal-Free Amidation Reactions of Terminal Alkynes with Benzenesulfonamide. Journal of Organic Chemistry, 2019, 84, 3176-3183.	3.2	19
40	Combination of NH ₂ OH·HCl and NaIO ₄ : an effective reagent for molecular iodine-free regioselective 1,2-difunctionalization of olefins and easy access of terminal acetals. RSC Advances, 2015, 5, 56780-56788.	3.6	18
41	Vinylation of Carbonyl Oxygen in 4-Hydroxycoumarin: Synthesis of Heteroarylated Vinyl Ethers. Synthesis, 2019, 51, 2371-2378.	2.3	18
42	Self-Catalyzed Rapid Synthesis of <i>N</i> -Acylated/ <i>N</i> -Formylated α-Aminoketones and <i>N</i> -Hydroxymethylated Formamides from 3-Aryl-2 <i>H</i> -Azirines and 2-Me/Ph-3-Aryl-2 <i>H</i> -Azirines. Organic Letters, 2020, 22, 3926-3930.	4.6	18
43	1-Hydroxypyrene-based micelle-forming sensors for the visual detection of RDX/TNG/PETN-based bomb plots in water. New Journal of Chemistry, 2018, 42, 19864-19871.	2.8	17
44	Rational synthetic methods in creating promising (hetero)aromatic molecules and materials. Mendeleev Communications, 2020, 30, 537-554.	1.6	17
45	Microwave-Assisted Three-Component "Catalyst and Solvent-Free―Green Protocol: A Highly Efficient and Clean One-Pot Synthesis of Tetrahydrobenzo[<i>b</i>]pyrans. Organic Chemistry International, 2014, 2014, 1-8.	1.0	15
46	Iron(III)-catalyzed synthesis of selenoesters from α-amino carbonyl derivatives at room temperature. Tetrahedron, 2019, 75, 130624.	1.9	15
47	Facile synthesis of substituted quinolines by iron(iii)-catalyzed cascade reaction between anilines, aldehydes and nitroalkanes. Organic and Biomolecular Chemistry, 2019, 17, 7907-7917.	2.8	14
48	Synthesis and optical properties of new 2-(5-arylpyridine-2-yl)-6-(het)arylquinoline-based "push-pull― fluorophores. Dyes and Pigments, 2019, 167, 151-156.	3.7	14
49	BrÃ,nsted acidic ionic liquid–catalyzed tandem trimerization of indoles: An efficient approach towards the synthesis of indole 3,3′â€ŧrimers under solventâ€free conditions. Journal of Heterocyclic Chemistry, 2020, 57, 1863-1874.	2.6	14
50	lonic <scp>liquidâ€assisted</scp> synthesis of <scp>2â€aminoâ€3â€cyanoâ€4<i>H</i></scp> â€chromenes: A sustainable overview. Journal of Heterocyclic Chemistry, 2022, 59, 633-654.	2.6	14
51	Mechanochemical synthesis of coumarins <i>via</i> Pechmann condensation under solvent-free conditions: an easy access to coumarins and annulated pyrano[2,3- <i>f</i>] and [3,2- <i>f</i>]indoles. Green Chemistry, 2022, 24, 2429-2437.	9.0	14
52	Use of allylzinc halide as a source of halide: Differential addition of nucleophiles to Ts-aziridines and aldehydes under similar reaction conditions. Tetrahedron Letters, 2019, 60, 276-283.	1.4	13
53	Ligand-free reusable nano copper oxide-catalyzed synthesis of 3-amino-1,4-diynes. RSC Advances, 2015, 5, 91326-91329.	3.6	12
54	An Updated Library on the Synthesis of Aziridines. Current Green Chemistry, 2019, 6, 226-241.	1.1	12

#	Article	IF	CITATIONS
55	A PASE-based approach towards 12-(1H-1,2,3-triazol-1-yl)-indolo[2,1-a]isoquinolines via the reaction of 3-(isoquinolin-1-yl)-1,2,4-triazines with benzyne. Mendeleev Communications, 2019, 29, 369-371.	1.6	11
56	Synthesis and photophysics of new unsymmetrically substituted 5,5′-diaryl-2,2′-bypiridine-based "push-pull―fluorophores. Dyes and Pigments, 2019, 162, 324-330.	3.7	11
57	A Mild and Efficient Method for the Syntheses and Regioselective Ring-Opening of Aziridines. SynOpen, 2017, 01, 0015-0023.	1.7	10
58	Synthesis and luminescence of new water-soluble lanthanide complexes of DTTA-containing 4-(4-methoxyphenyl)-2,2′-bipyridine. Inorganica Chimica Acta, 2018, 478, 49-53.	2.4	10
59	An Efficient Synthesis of Oxazolidines by Tandem Ringâ€Opening / Closing Reaction of Tsâ€Aziridine Using Formic Acid. ChemistrySelect, 2018, 3, 10509-10514.	1.5	10
60	A PASE Approach towards (Adamantylâ€1)â€, Alkyl†and (Het)Arylâ€5ubstituted [1, 2,4]triazolo[1, 5â€d][1, 2,4]triazines: A Sequence of Two Solventâ€Free Reactions Bearing Low ChemistrySelect, 2018, 3, 8202-8206.	erıEâ€Fac	to is
61	Scope and Limitations of Leuckartâ€Wallachâ€Type Reductive Amination: Chemoselective Synthesis of Tertiary Amines from Aldehydes under Neat Conditions. ChemistrySelect, 2018, 3, 4058-4066.	1.5	9
62	Pot, Atom, Step Economic (PASE) Approach towards (<i>Aza</i>)â€2,2′â€Bipyridines: Synthesis and Photophysical Studies. ChemistrySelect, 2018, 3, 340-347.	1.5	9
63	Mono―and Polyazatriphenyleneâ€Based Ligands: An Updated Library of Synthetic Strategies (2001–2018). European Journal of Organic Chemistry, 2018, 2018, 4351-4375.	2.4	9
64	Highlyâ€Luminescent DTTAâ€Appended Waterâ€Soluble Lanthanide Complexes of 4â€(Het)arylâ€2,2′â€bipyr Synthesis and Photophysical Properties. ChemistrySelect, 2019, 4, 6377-6381.	idines: 1.5	9
65	Synthesis and photophysical studies of new organic-soluble lanthanide complexes of 4-(4-alkoxyphenyl)-2,2′-bipyridine-6-carboxylic acids. Journal of Molecular Structure, 2019, 1176, 583-590.	3.6	9
66	Synthetic approaches and supramolecular properties of 2,2′:n′,m″-terpyridine domains (n = 3,4,5,6; based on the 2,2′-bipyridine core as ligands with k2N-bidentate coordination mode. Coordination Chemistry Reviews, 2021, 442, 213980.	mâ€ [–] =â€ 18.8	-2,3,4) 9
67	An Efficient Cyanide-Free Approach towards 1-(2-Pyridyl)isoquinoline-3-carbonitriles via the Reaction of 5-Phenacyl-1,2,4-triazines with 1,2-Dehydrobenzene in the Presence of Alkyl Nitrites. Synlett, 2018, 29, 483-488.	1.8	8
68	Synthesis of diverse β -(nitrooxy)-substituted amines by regioselective ring-opening of aziridines under neat conditions. Synthetic Communications, 2018, 48, 1857-1866.	2.1	8
69	Synthesis of 2-phenyl-2-(5-phenyl-2,2'-bipyridin-6-yl)-acetonitrile by "1,2,4-triazine―method with using autoclave. AIP Conference Proceedings, 2019, , .	0.4	8
70	Water-soluble luminescent lanthanide complexes based on C6-DTTA-appended 5-aryl-2,2′-bipyridines. Polyhedron, 2020, 181, 114473.	2.2	8
71	Nano indium oxide-catalyzed domino reaction for the synthesis of N-alkoxylated benzimidazoles. Tetrahedron Letters, 2020, 61, 152177.	1.4	8
72	Mechanochemically Induced Cross Dehydrogenative Coupling Reactions under Ball Milling. Advanced Synthesis and Catalysis, 2022, 364, 2462-2478.	4.3	8

#	Article	IF	CITATIONS
73	Unsymmetrically functionalized 5,5″-diaryl- and 5,6,5″-triaryl-2,2′:6′,2″-terpyridines: an efficient sy route and photophysical properties. Canadian Journal of Chemistry, 2017, 95, 851-857.	nthetic 1.1	7
74	A Domino Approach for the Synthesis of <i>α</i> â€lodoâ€ <i>β</i> â€dicarbonyl Compounds from <i>α</i> â€Epoxycarbonyls. ChemistrySelect, 2017, 2, 6254-6259.	1.5	7
75	Direct Introduction of a Methyl Group at the C5â€Position of 1,2,4â€Triazines: Convenient Synthesis of 6â€Functionalized 5â€Arylâ€2,2′â€bipyridines. ChemistrySelect, 2020, 5, 2753-2755.	1.5	7
76	Mild, Efficient and Metalâ€Free Strategies for Direct Diamination of α, βâ€Unsaturated Ketones Using Different Iodine Sources. ChemistrySelect, 2021, 6, 4684-4688.	1.5	7
77	2-Azaanthracenes: a chronology of synthetic approaches and bright prospects for practical applications. New Journal of Chemistry, 2019, 43, 11382-11390.	2.8	6
78	An expedient synthesis of 5-alkynyl-6-aryl-2,2′-bipyridines. Mendeleev Communications, 2020, 30, 610-611.	1.6	6
79	5-Aryl-6-arylthio-2,2′-bipyridine and 6-Arylthio-2,5-diarylpyridine Fluorophores: Pot, Atom, Step Economic (PASE) Synthesis and Photophysical Studies. Journal of Fluorescence, 2021, 31, 1099-1111.	2.5	6
80	A practicable synthesis of 2,3-disubstituted 1,4-dioxanes bearing a carbonyl functionality from α,β-unsaturated ketones using the Williamson strategy. Organic and Biomolecular Chemistry, 2021, 19, 1278-1286.	2.8	6
81	Recent Advances in the Synthesis of Coumarin and Its Derivatives by Using Aryl Propiolates. ChemistrySelect, 2022, 7, .	1.5	6
82	Synthetic approaches to 1,2,4-triazolo[5,1- <i>c</i>][1,2,4]triazin-7-ones as basic heterocyclic structures of the antiviral drug Riamilovir ("Triazavirin®â€) active against SARS-CoV-2 (COVID-19). Organic and Biomolecular Chemistry, 2022, 20, 1828-1837.	2.8	6
83	A new tandem synthesis of bis(β,β′-dialkoxy carbonyl) compounds by oxidative cleavage of aziridines under metal-free conditions. Organic and Biomolecular Chemistry, 2020, 18, 551-556.	2.8	5
84	Computer vision <i>vs.</i> spectrofluorometer-assisted detection of common nitro-explosive components with <i>bola</i> -type PAH-based chemosensors. RSC Advances, 2021, 11, 25850-25857.	3.6	5
85	Asymmetrically substituted 5,5′′-diaryl-2,2′:6′,2′′-terpyridines as efficient fluorescence "tu for Zn2+ in food/cosmetic samples and human urine. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113101.	rn-on―pro 3.9	obes 5
86	Direct Asymmetric Addition of Heteroatom Nucleophiles to Imines. Advanced Synthesis and Catalysis, 2022, 364, 2092-2112.	4.3	5
87	Recent Advancements in Development of Radical Silylation Reactions. Current Organic Chemistry, 2022, 26, 920-960.	1.6	5
88	A Domino Approach for the Synthesis of α,βâ€Epoxy Ketones from Carbonyl Compounds under Neat Conditions at Ambient Temperature. ChemistrySelect, 2018, 3, 7596-7601.	1.5	4
89	Highly-luminescent DTTA-appended lanthanide complexes of 4-(multi)fluoroaryl-2,2′-bipyridines: Synthesis and photophysical studies. Polyhedron, 2021, 195, 114962.	2.2	4
90	Synthesis of Novel 3-(Pyridin-4-yl)-1,2,4-Triazines, their Analogs and Study of the Activity Against Vaccinia Virus. Chemistry of Heterocyclic Compounds, 2021, 57, 462-466.	1.2	4

#	Article	IF	CITATIONS
91	Synthesis of 2-imidazolines by co-grinding of N-tosylaziridines and nitriles. Mendeleev Communications, 2020, 30, 188-189.	1.6	3
92	An expedient solvent-free C-benzylation of 4-hydroxycoumarin with styrenes. Mendeleev Communications, 2021, 31, 123-124.	1.6	3
93	2,7-Diazapyrenes: a brief review on synthetic strategies and application opportunities. RSC Advances, 2022, 12, 9323-9341.	3.6	3
94	Visibleâ€Lightâ€Mediated Synthesis of 1â€Oxaâ€4â€azaâ€spiro Oxazolines by Spiroannulation of Quinones with Vinyl Azides. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
95	Zwitterionic molten salt: An efficient organocatalyst for the one-pot synthesis of propargylamines. AIP Conference Proceedings, 2020, , .	0.4	2
96	Neutral Lanthanide Complexes of 3â€Arylâ€6â€(quinolinâ€2â€yl)picolinic Acids: Synthesis and Photophysical Studies. ChemistrySelect, 2020, 5, 9210-9213.	1.5	2
97	Synthesis and Luminescent Properties of Functionalized Bipyridyl Based Eu Complexes. ChemistrySelect, 2020, 5, 9180-9183.	1.5	2
98	CuO Nanoparticles as a Simple and Efficient Green Catalyst for the Aziridine Ringâ€Opening: Examination of a Broad Range of Nucleophiles. ChemistrySelect, 2020, 5, 4525-4529.	1.5	2
99	Direct Câ^'H Functionalization of Calix[<i>n</i>](het)arenes (<i>n</i> =4,6): A Brief Update. ChemistrySelect, 2022, 7, .	1.5	2
100	Super Base Derived Ionic Liquids: A Useful Tool in Organic Synthesis. Current Organic Chemistry, 2022, 26, 1237-1263.	1.6	2
101	Green synthetic approaches for practically relevant (hetero)macrocycles: An overview. AIP Conference Proceedings, 2020, , .	0.4	1
102	Preparation of monoethanolamine and 5-phenyl-2,2′-bipyridine derivatives and their subsequent tosylation reactions. AIP Conference Proceedings, 2019, , .	0.4	0
103	Preparation of ligands for lanthanide cations based on 5-aryl-2,2′-bipyridine-6′-carboxylic acids with an extended conjugation system. AIP Conference Proceedings, 2019, , .	0.4	0
104	Synthesis of pyrazinamide analogues. AIP Conference Proceedings, 2019, , .	0.4	0
105	Metal and solvent free direct C3-alkylation of 4-hydroxycoumarins with styrene. AIP Conference Proceedings, 2020, , .	0.4	0
106	Ionic liquid catalyzed simple and green synthesis of benzothiazole under neat condition. AIP Conference Proceedings, 2020, , .	0.4	0
107	An efficient method for the synthesis of dihydropyrimidines using BrÃ,nsted acidic ionic liquid: A solvent and heating free reaction. AIP Conference Proceedings, 2020, , .	0.4	0
108	A Lewis acid promoted reduction of aromatic nitro to amine compounds. AIP Conference Proceedings, 2020, , .	0.4	0

#	Article	IF	CITATIONS
109	BrÃ,nsted acidic ionic liquid promoted synthesis of amidoalkyl naphthols under solvent-free conditions. AIP Conference Proceedings, 2020, , .	0.4	0
110	BrÃ,nsted acidic ionic liquid-catalyzed one-pot synthesis of 4(3H)-quinazolinones under solvent-free conditions. AIP Conference Proceedings, 2020, , .	0.4	0
111	"Green" solvent-economic synthesis of 5,11,17,23,29,35,41,47-octa-tert-butyl-49,50,51,52,53,54,55,56-octaoxycalix[8]arene. AIP Conference Proceedings, 2020, , .	0.4	0
112	BrÃ,nsted acidic ionic liquid: An efficient and reusable catalyst for the synthesis of dicoumarol. AIP Conference Proceedings, 2020, , .	0.4	0