Huaqiang Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4399829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZnO@graphene composite with enhanced performance for the removal of dye from water. Journal of Materials Chemistry, 2011, 21, 3346-3349.	6.7	570
2	Co ₃ O ₄ @graphene Composites as Anode Materials for High-Performance Lithium Ion Batteries. Inorganic Chemistry, 2011, 50, 1628-1632.	1.9	354
3	Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. Journal of Materials Chemistry, 2011, 21, 5069.	6.7	336
4	Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO ₂ Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 17893-17898.	1.5	250
5	Template Synthesis and Magnetic Behavior of an Array of Cobalt Nanowires Encapsulated in Polyaniline Nanotubules. Advanced Materials, 2001, 13, 121-123.	11.1	225
6	Generation and photocatalytic activities of Bi@Bi2O3 microspheres. Nano Research, 2011, 4, 470-482.	5.8	204
7	Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors. Journal of Materials Chemistry, 2011, 21, 10645.	6.7	200
8	Sol-Gel Template Synthesis of an Array of Single Crystal CdS Nanowires on a Porous Alumina Template. Advanced Materials, 2001, 13, 1393-1394.	11.1	190
9	Enhanced anode performances of the Fe3O4–Carbon–rGO three dimensional composite in lithium ion batteries. Chemical Communications, 2011, 47, 10374.	2.2	182
10	Room-temperature ultraviolet-emitting In2O3 nanowires. Applied Physics Letters, 2003, 83, 761-763.	1.5	168
11	Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires. Advanced Functional Materials, 2004, 14, 243-246.	7.8	166
12	<scp>l</scp> -Cysteine-Assisted Synthesis and Optical Properties of Ag ₂ S Nanospheres. Journal of Physical Chemistry C, 2008, 112, 3580-3584.	1.5	143
13	Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 9759.	6.7	136
14	MoO3 nanowires as electrochemical pseudocapacitor materials. Chemical Communications, 2011, 47, 10305.	2.2	135
15	Generation and Growth Mechanism of Metal (Fe, Co, Ni) Nanotube Arrays. ChemPhysChem, 2006, 7, 1500-1504.	1.0	133
16	Mg(OH)2@reduced graphene oxide composite for removal of dyes from water. Journal of Materials Chemistry, 2011, 21, 13765.	6.7	133
17	Improved performances of β-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries. Chemical Communications, 2011, 47, 3159.	2.2	126
18	Growth and Optical Properties of Wurtzite-Type CdS Nanocrystals. Inorganic Chemistry, 2006, 45, 5103-5108	1.9	125

HUAQIANG CAO

#	Article	IF	CITATIONS
19	Growth and photoluminescence properties of PbS nanocubes. Nanotechnology, 2006, 17, 3280-3287.	1.3	117
20	Designed synthesis of SnO2-polyaniline-reduced graphene oxide nanocomposites as an anode material for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 17654.	6.7	117
21	Biomolecule-Assisted Synthesis of Water-Soluble Silver Nanoparticles and Their Biomedical Applications. Inorganic Chemistry, 2008, 47, 5882-5888.	1.9	116
22	Self-assembly into magnetic Co ₃ O ₄ complex nanostructures as peroxidase. Journal of Materials Chemistry, 2012, 22, 527-534.	6.7	116
23	Shape and Magnetic Properties of Single-Crystalline Hematite (α-Fe2O3) Nanocrystals. ChemPhysChem, 2006, 7, 1897-1901.	1.0	114
24	Hydroxyapatite Nanocrystals for Biomedical Applications. Journal of Physical Chemistry C, 2010, 114, 18352-18357.	1.5	113
25	Co-Co3O4@carbon core–shells derived from metalâ^'organic framework nanocrystals as efficient hydrogen evolution catalysts. Nano Research, 2017, 10, 3035-3048.	5.8	106
26	SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 23963.	6.7	97
27	Hydrothermal Fabrication of MnCO ₃ @rGO Composite as an Anode Material for High-Performance Lithium Ion Batteries. Inorganic Chemistry, 2014, 53, 9228-9234.	1.9	95
28	Generation and Optical Properties of Monodisperse Wurtzite-Type ZnS Microspheres. Inorganic Chemistry, 2006, 45, 7316-7322.	1.9	89
29	Mg(OH) ₂ Complex Nanostructures with Superhydrophobicity and Flame Retardant Effects. Journal of Physical Chemistry C, 2010, 114, 17362-17368.	1.5	87
30	Enhanced Anode Performances of Polyaniline–TiO ₂ –Reduced Graphene Oxide Nanocomposites for Lithium Ion Batteries. Inorganic Chemistry, 2012, 51, 9544-9551.	1.9	84
31	Sol–gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxide. Journal of Membrane Science, 1999, 162, 181-188.	4.1	83
32	Synthesis and separation of dyesvia Ni@reduced graphene oxide nanostructures. Journal of Materials Chemistry, 2012, 22, 1876-1883.	6.7	83
33	Synthesis and Applications of Î ³ -Tungsten Oxide Hierarchical Nanostructures. Crystal Growth and Design, 2013, 13, 759-769.	1.4	75
34	<scp>l</scp> -Lysine-Assisted Synthesis of ZrO ₂ Nanocrystals and Their Application in Photocatalysis. Journal of Physical Chemistry C, 2009, 113, 18259-18263.	1.5	72
35	Sol-gel synthesis and photoluminescence of p-type semiconductor Cr2O3 nanowires. Applied Physics Letters, 2006, 88, 241112.	1.5	65
36	SnO2–carbon–RGO heterogeneous electrode materials with enhanced anode performances in lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 2851.	6.7	65

HUAQIANG CAO

#	Article	IF	CITATIONS
37	Graphite/graphene oxide composite as high capacity and binder-free anode material for lithium ion batteries. Journal of Power Sources, 2013, 241, 619-626.	4.0	65
38	<scp>l</scp> -Serine-Assisted Synthesis of Superparamagnetic Fe ₃ O ₄ Nanocubes for Lithuium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 24688-24695.	1.5	62
39	The synthesis of superhydrophobic Bi ₂ S ₃ complex nanostructures. Nanotechnology, 2010, 21, 145601.	1.3	61
40	Synthesis of Adenine-Modified Reduced Graphene Oxide Nanosheets. Inorganic Chemistry, 2012, 51, 2954-2960.	1.9	60
41	Synthesis and Photocatalytic Activity of Single-Crystalline Hollow rh-In ₂ O ₃ Nanocrystals. Inorganic Chemistry, 2012, 51, 6529-6536.	1.9	59
42	Solvothermal synthesis of magnetic CoFe ₂ O ₄ /rGO nanocomposites for highly efficient dye removal in wastewater. RSC Advances, 2017, 7, 4062-4069.	1.7	57
43	Ag2Se complex nanostructures with photocatalytic activity and superhydrophobicity. Nano Research, 2010, 3, 863-873.	5.8	55
44	Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nature Communications, 2020, 11, 3917.	5.8	55
45	Engineering VO-Ti ensemble to boost the activity of Ru towards water dissociation for catalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 306, 121100.	10.8	55
46	Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior. Applied Physics Letters, 2001, 78, 1592-1594.	1.5	53
47	Structural Evolution of Co-Based Metal Organic Frameworks in Pyrolysis for Synthesis of Core–Shells on Nanosheets: Co@CoO _{<i>x</i>} @Carbon-rGO Composites for Enhanced Hydrogen Generation Activity. ACS Applied Materials & Interfaces, 2016, 8, 15430-15438.	4.0	53
48	Sol-Gel Template Synthesis and Photoluminescence of n- and p-Type Semiconductor Oxide Nanowires. ChemPhysChem, 2006, 7, 497-501.	1.0	51
49	Bioinspired Peonyâ€Like βâ€Ni(OH) ₂ Nanostructures with Enhanced Electrochemical Activity and Superhydrophobicity. ChemPhysChem, 2010, 11, 489-494.	1.0	47
50	Defect-rich (Co–CoS ₂) _x @Co ₉ S ₈ nanosheets derived from monomolecular precursor pyrolysis with excellent catalytic activity for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 7977-7987.	5.2	46
51	MgCO ₃ ·3H ₂ O and MgO complex nanostructures: controllable biomimetic fabrication and physical chemical properties. Physical Chemistry Chemical Physics, 2011, 13, 5047-5052.	1.3	45
52	Synthesis andl–Vproperties of aligned copper nanowires. Nanotechnology, 2006, 17, 1736-1739.	1.3	44
53	Crystallization and Self-Assembly of Calcium Carbonate Architectures. Crystal Growth and Design, 2008, 8, 4583-4588.	1.4	42
54	Functionalized polyimide separators enable high performance lithium sulfur batteries at elevated temperature. Journal of Power Sources, 2018, 396, 542-550.	4.0	42

Huaqiang Cao

#	Article	IF	CITATIONS
55	Efficient carbon-based catalyst derived from natural cattail fiber for hydrogen evolution reaction. Journal of Solid State Chemistry, 2019, 274, 207-214.	1.4	42
56	Single-Crystalline Semiconductor In(OH) ₃ Nanocubes with Bifunctions: Superhydrophobicity and Photocatalytic Activity. Crystal Growth and Design, 2010, 10, 597-601.	1.4	41
57	Ferromagnetic hematite@graphene nanocomposites for removal of rhodamine B dye molecules from water. CrystEngComm, 2012, 14, 5140.	1.3	41
58	Amino-acid-assisted synthesis and size-dependent magnetic behaviors of hematite nanocubes. Applied Physics Letters, 2008, 92, .	1.5	40
59	Atomic-bridge structure in B-Co-P dual-active sites on boron nitride nanosheets for catalytic hydrogen generation. Applied Catalysis B: Environmental, 2022, 314, 121495.	10.8	40
60	The synthesis and photocatalytic activity of ZnSe microspheres. Nanotechnology, 2011, 22, 015604.	1.3	39
61	An array of iron nanowires encapsulated in polyaniline nanotubules and its magnetic behavior. Journal of Materials Chemistry, 2001, 11, 958-960.	6.7	36
62	<scp>l</scp> -Cysteine-Assisted Self-Assembly of Complex PbS Structures. Crystal Growth and Design, 2008, 8, 3935-3940.	1.4	36
63	Shape control of PbS nanocrystals using multiple surfactants. Nanotechnology, 2008, 19, 305605.	1.3	36
64	Biomineralization Strategy to α-Mn ₂ O ₃ Hierarchical Nanostructures. Journal of Physical Chemistry C, 2012, 116, 21109-21115.	1.5	36
65	Magnetic catalysts as nanoactuators to achieve simultaneous momentum-transfer and continuous-flow hydrogen production. Journal of Materials Chemistry A, 2016, 4, 4280-4287.	5.2	35
66	Shape controlled synthesis of superhydrophobic zinc coordination polymers particles and their calcination to superhydrophobic ZnO. Journal of Materials Chemistry, 2011, 21, 8633.	6.7	33
67	Biomineralization and Superhydrophobicity of BaCO ₃ Complex Nanostructures. Inorganic Chemistry, 2009, 48, 10326-10329.	1.9	32
68	Glucosan controlled biomineralization of SrCO3 complex nanostructures with superhydrophobicity and adsorption properties. Journal of Materials Chemistry, 2011, 21, 8734.	6.7	32
69	Synthesis and structure of a novel infinite triple helices coordination polymer {[Mn(bipy)(azpy)2(NCS)2]·H2O}n(bipy=4,4′-bipyridine, azpy = 4,4′-azobispyridine). Inorganic Chemistry Communication, 2001, 4, 451-453.	1.8	30
70	Engineering Bimodal Oxygen Vacancies and Pt to Boost the Activity Toward Water Dissociation. Small, 2022, 18, e2105588.	5.2	27
71	Local Plant-Derived Carbon Sheets as Sustainable Catalysts for Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2107-2115.	3.2	26
72	The synthesis and fluorescence quenching properties of well soluble hybrid graphene material covalently functionalized with indolizine. Nanotechnology, 2011, 22, 075202.	1.3	20

HUAQIANG CAO

#	Article	IF	CITATIONS
73	Synthesis and superior cathode performance of sandwiched LiMn2O4@rGO nanocomposites for lithium-ion batteries. Materials Today Advances, 2019, 1, 100001.	2.5	18
74	Sol–gel synthesis of an array of C70 single crystal nanowires in a porous alumina template. Chemical Communications, 2001, , 541-542.	2.2	16
75	Poly(ethylene glycol)-Assisted Two-Dimensional Self-Assembly of Zinc Sulfide Microspheres. Inorganic Chemistry, 2006, 45, 4586-4588.	1.9	16
76	Generation and superhydrophobicity of complex PbSe crystalline nanodendrites. CrystEngComm, 2011, 13, 5688.	1.3	14
77	Catalytic chemiluminescence properties of boehmite "nanococoons― Applied Physics Letters, 2007, 90, 193105.	1.5	13
78	Graphene Covalently Modified by DNA G-Base. Journal of Physical Chemistry C, 2013, 117, 3513-3519.	1.5	13
79	One-step synthesis of SnO ₂ -reduced graphene oxide (SOG) composites for efficient removal of organic dyes from wastewater. RSC Advances, 2016, 6, 100636-100642.	1.7	13
80	Advances and Prospects in Metal–Organic Frameworks as Key Nexus for Chemocatalytic Hydrogen Production. Small, 2021, 17, e2102201.	5.2	12
81	Anchoring superparamagnetic core–shells onto reduced graphene oxide: fabrication of Ni–carbon–rGO nanocomposite for effective adsorption and separation. RSC Advances, 2015, 5, 10033-10039.	1.7	11
82	Successive Free-Radical C(sp ²)–C(sp ²) Coupling Reactions to Form Graphene. CCS Chemistry, 2022, 4, 584-597.	4.6	10
83	3D dendritic-Fe ₂ O ₃ @C nanoparticles as an anode material for lithium ion batteries. RSC Advances, 2017, 7, 18508-18511.	1.7	9
84	Space onfined Creation of Nanoframes In Situ on Reduced Graphene Oxide. Small, 2015, 11, 1512-1518.	5.2	7
85	Pt nanoparticles decorated rose-like Bi ₂ O ₂ CO ₃ configurations for efficient photocatalytic removal of water organic pollutants. RSC Advances, 2018, 8, 914-920.	1.7	7
86	LiMnO ₂ @rGO nanocomposites for highâ€performance lithiumâ€ion battery cathodes. Nanotechnology, 2021, 32, 015402.	1.3	7
87	Synthesis of two-dimensional porous aromatic frameworks via triple condensation reaction. Materials Today Advances, 2019, 2, 100013.	2.5	3
88	Thickness-dependent Young's modulus of polycrystalline α-PbO nanosheets. Nanotechnology, 2020, 31, 395712.	1.3	3
89	Synthesis of Subâ€nanometer Porous Carbon Film for Energy Storage. Chemistry - an Asian Journal, 2020, 15, 2992-2995.	1.7	0